
Page 1

v3 du 13 fév 2023 / litzis@bluewin.ch it is a Google translation

Main objectives :

 Allow anyone who owns an Arduino Vidor board to have a logic analyzer for a investment less
than CHF 100

 Demonstrate that it is possible to obtain a result without knowledge of the Verilog language
 Provide a skeleton for the Microsoft WPF (Windows Presentation Foundation) with dynamic

DrawLine, PreviewKeyDown & Serial("COM", 800000)
 Present some effective methods to debug such a project
 Replace my LabNation analyzer with a boring Trigger mechanism
 Provide https://github.com/gelit/Logic-Analyzer-with-Arduino-Vidor with all files

Why a logic analyzer ?

The logic analyzer is the essential tool for testing and validating hardware developments
It allows, in a time window, for example of 1670 µs (= micro-second), to visualize several digital
signals :

This example visualizes 7 channels (= digital signals)

The logic analyzer only knows states 0 and 1; there is therefore no need to attempt to measure a rise
time
Unlike the vast majority of analysers, the proposed display does not display any edges !

Time = 396 indicates the time interval between the 2 cursors; the unit (µs or ms) is specified at the
bottom with 1670 µs

Pos gives the pixel value of the 1st cursor (useful to check that the horizontal resolution is equal to 1920
pixels)

Page 2

Principe of operation

During the acquisition phase, the 7 signals are read
(sampled) every 0.879 µs to fill a 1900 bit memory.
The acquisition window is therefore = 1900 x 0.879 = 1670 µs
(microsecond) = 1.67 ms (millisecond)

The sampling frequency is, in this case, equal to 1.14 MHz
since F=1/T (Frequency = inverse of the Period)

Acquisition is started (Trigger) on the first rising (positive)
edge or falling (negative) edge of signal (channel) 1

At the display level :
 The chosen horizontal resolution (1920 pixel) associates

one pixel for each 0.879 µs (sample)
 The vertical resolution displays 7 signals (channels)

Thanks to USB, it is conceivable to connect N cards to have a device displaying N x 6 inputs + common
channel 1 (Trigger)

Simple & effective use

Failure to detect the card is signaled by a beep and an explicit message
instead of

The first column displays the status of each input with a 1 second refresh

It is therefore useless to hope for an acquisition if channel 1 remains at L (Low) or H (High)

The default display places the Trigger edge at pixel 200; i.e. about 10% of the 1900 available
Keyboard shortcuts :
 B (Begin)
 C (Center) with edge at 50%
 E (End) 90%

S (Stop) locks the acquisition in order to keep the data of the last acquisition

State indicated by or (default mode)

The acquisition window is voluntarily limited to the width of the screen (1900 pixels)
and varies according to the sampling frequency chosen with the up and down arrows :
 Min = 104 µs
 Max = 107 ms

Page 3

La position du curseur 1 est affichée en première ligne
Horizontal arrows move cursors
Tab key selects cursor 1 or 2
The LeftShift key accelerates movement by 10
Cursor position 1 is displayed on the first line
The time interval, between the 2 cursors, is displayed
Type Z to hide cursors

The software integrates a signal generator with output on A0 whose sequences are accessible with
keys 1 to 9

It offers various (easily editable) choices in the Arduino Sketch

case '1' : digitalWrite(A0,1); delayMicroseconds(100); digitalWrite(A0,0);
break;

case '2' : for (N=1; N<=14; N++) {digitalWrite(A0,1); delayMicroseconds(100);
 digitalWrite(A0,0); delayMicroseconds(100);}
break;

Limitations : the card has 22 pins which are all used

 Available Interne use
 D0 Tshift (FPGA CPU)
 D1-D7 7 input
 D8-D14 7 output (FPGA CPU)
 A0 Generator
 A1 Byte Available (FPGA CPU)
 A2-A4 Féch Sampling Frequency (FPGA CPU)
 A5-A6 Mode du Trigger (FPGA CPU)

Attention – Danger !!!
The person using this logic analyzer must understand the characteristics (limites) of a Dx input
According to
https://www.intel.com/content/www/us/en/docs/programmable/683251/current/recommended-operating-conditions.html

The max voltage is limited to 3.6 V

During my measurements on the Märklin rail, with an alternating voltage of +18V- with -18V+,
I use a CNY17 optocoupler in order to limit the voltage to 3.3 V and ensure galvanic separation

2.2 kΩ

GND

Dx

3.3 V

2.2 kΩ

Rail
+-18 V

Choices

Page 4

They facilitate the use of this logic analyzer :
 Only one Trigger possible with channel 1 on the rising or falling edge
 All the memory of the 7 channels of 1900 bit is displayed
 Acquisition windows Tech Féch

µs ms ns ms MHz kHz
104 55 18.2 Clk[0]
209 110 9.1 Clk[1]
418 220 4.55 Clk[2]
835 439 2.28 Clk[3]
1670 879 1.14 Clk[4] Valeur par défaut

3 1758 1.76 569 Clk[5]
7 3.51 284 Clk[6]
13 7.03 142 Clk[7]
27 14.1 71 Clk[8]
53 28.1 35.5 Clk[9]
107 56.3 17.8 Clk[10]

 Measurements performed with LabNation precision
 2 cursors to measure a time interval
 Trigger in Begin – Center – End or Stop mode
 Signal generator (output A0) easily modifiable
 Keyboarf shortcuts no mouse

Changing the sampling rate

It is essential to understand that this change will result in a new display !
With the down arrow, the acquisition window increases (doubles) so that the display ends halfway.
On the other hand with the up arrow, the 1900 pixels of the new display correspond to half of the
acquired data
This mechanism is iterative as long as the analyzer does not receive a new acquisition

It is therefore advisable, after modifying the acquisition window, to carry out a new acquisition
in order to display the 1900 pixels of each channel

Page 5

2 machines d’état (avec des fréquences différentes) assurent le bon séquencement

The 1st state machine (SM1) manages
the acquisition of data from the 7
channels in the shift registers.

In the initial state 1, Ashift=1 authorizes
the acquisition
It changes to state 2 on the first
positive or negative edge
 Trigger=1

States 3 – 4 – 5 are chosen according
to the mode Begin – Center – End
selected

The default Begin mode displays this first
edge of channel 1 at position (pixel) 200;
which requires to acquire 1700 bit after
the detection of the Trigger

Ashift=0 indicates the end of the
acquisition
Start=1 starts the 2nd state machine
SM1 waits on Go=1 (generated by SM2)

The 2nd state machine (SM2) manages
the transfer of data to the PC via USB

It starts with Start=1 generated by SM1

In state 3, Tschift is activated to authorize the
transfer (shift)

State 4 with ByAv (Byte Available)
signals to the CPU that the data is
available

In this synchronous mechanism, CPU
must be able in 56 ms (F=17.8 kHz) to read
the 7 channels and send the
compressed data to the PC

State 6 terminates the transfer and places
SM1 in its initial state

Page 6

Format of data on USB
Visible in View – Output of VisualStudio thanks to Debug.Write(Rx);

Delta=3 Very useful during Debug to check the correct alignment no lost bits

Just increase F to understand the problems

1C Canal 1 Clear
1L200 Low 200
1H313 High 313
1L1903 Low 1903
…
7C Canal 7 …
7H1296
…
7L1903

The display of the first page includes 7 channels of 1900 bit = 13'300 bit

Notepad++ indicates total length = 220 characters ; i.e. 2200 bit on USB (10 bit / caract.)

Le compression factor = 1 - 2200/13300 = 83 %

My tips for debugging :

ToggleLed allows to test if a procedure is called, the result of a test or … swithout impacting the CPU load

Serial1.print uses pins 13 – 14 and allows redirecting USB output to a putty terminal

Display states of State Machine by assigning outputs S0 – S1 – --- with powers of 2

Use this logic analyzer

Improvement points :

This project is intended to be educational; it therefore does not include all the functions of a high-end
analyzer; letting everyone add what they lack

Some ideas that interest me :

 Activate a sophisticated PLL (PLL synthetizer) to use sampling frequencies higher than 18 MHz ;
forr exemple 350 MHz !
Clock Tree Max = 402 MHz for 10CL016 … C8 according to
https://www.intel.com/content/www/us/en/docs/programmable/683251/current/clock-tree-
specifications.html
PLL output frequency (C8) = 402.5 MHz according to
https://www.intel.com/content/www/us/en/docs/programmable/683251/current/pll-
specifications.html

 Is-it possible to read 8 digital input simultaneously ?
My old Motorola 68000 allowed it very easy !!!

Page 7

Overview

Fech
TriggerFPGA

7 x 1900 bit
SM1
SM2

Sketch

CPU

LogicAnalyzer

Windows 10

PC
USB

7
en

tr
ée

s
D

1
- D

7
+

G
N

D

Carte Arduino Vidor

Tshift
D8 – D14

ByAvGND

Minimalist implementation (without modification of the FPGA)
1. From https://github.com/gelit/Logic-Analyzer-with-Arduino-Vidor Clic Code – Download ZIP
2. Put uncompressed files into folder …\Vidor\LA
3. Install & launch Arduino IDE 2.0
4. Identify the USB COMx port used
5. Load …\Vidor\LA \Sketch\Sketch.ino
6. Install Visual Studio 2022
7. Project – Manage Nuget Packages tu update System.IO.Ports
8. View – Solution Explorer
9. Double-clic on MainWindow.xaml.cs
10. Ctrl F to search COM
11. Change the default value of 3 based on the result of 4

12. Compile with

Implementation tu study or modify the FPGA
1. Have the basics of Intel Quartus software with https://gelit.ch/Vidor/Vidor1.pdf
2. Install & launch this software according page 5 of the document
3. Browse the 4 main files of this project : _top, SM1, SM2, Schema

FPGA technology has revolutionized hardware development by doing away with stock ICs and wrapper
gun
The excellent free Intel Quartus tool combined with libraries such
https://flex.phys.tohoku.ac.jp/riron/vhdl/up1/altera/cat/lpm.pdf offers the person motivated by
hardware development a beautiful playground.
Also, by owning 2 Vidor boards, this person will be able to develop on board 1 and test with the
analyzer on board 2

Implementation tu study or modify the Windows programm (minimalist suite)
 In Solution Explorer, double-clic on MainWindow.xaml which contains the static definition of objects

(Grid, Canvas, Text, Line) displayed
 MainWindow.xaml.cs contains the c# program

Page 8

About MainWindow.xaml :
 The vast majority of functional examples found on the internet manage WPF (Windows

Presentation Foundation) graphical objects in static ways !!!
 Luckily Google helped me to find this wonderful example

https://www.youtube.com/watch?v=cvfkz0s6czA to dynamically write a line !!!
 My current implementation with cursor avoids overlapping it with the 7 displayed channels because I

haven't found the zindex equivalent for static objects so far
 I planned for 2023 to use the HDMI compatible graphics library of the Vidor card

https://www.youtube.com/watch?v=QSbFltEfQBs to test its performances by remplacing my static
Windows 10 WPF display of my model trains

See more on :
https://gelit.ch/Train/Video.mp4
https://gelit.ch/Train/H4.pdf

In conclusion I am happy to announce, thanks to the valuable Intel Quartus Lite tool, that it is
possible to develop an FPGA solution without knowledge of the Verilog language.

The only difficulty, easily manageable for a teenager, consists in correctly defining input, output
and wire in the file https://github.com/gelit/Logic-Analyzer-with-Arduino-
Vidor/blob/main/VidorFPGA-master/projects/MKRVIDOR4000_template/MKRVIDOR4000_top.v

Intel Quartus Lite continues the philosophy of great Arduino products by combining simplicity,
quality and price affordability

Intel remains the hardware leader for me. This company, with a very high reputation, should fix
some bugs that an average user observes after 1 hour of use.

I remain at disposal for any further information.

Gérald Litzistorf – retired professor – https://gelit.ch/

