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BACKGROUND

Virtualization has begun to transform the way that enterprises are deploying and managing their 

infrastructure, providing the foundation for a truly agile enterprise, so  that IT can deliver an infrastructure 

that is flexible, scalable, and most importantly economical by efficiently utilizing resources.

10 years ago virtualization was unheard of in the x86 market it was reserved for mainframe and high end 

UNIX systems. Over the last 3 to 4 years there has been exponential growth in the virtualization market both 

in terms of customer adoption and in terms of the rise of the number vendors in the virtualization space; from 

new hypervisor vendors to virtualization management vendors too numerous to mention.

VIRTUALIZING THE X86 ARCHITECTURE

The x86 architecture has proven to be the dominate platform in enterprise computing, moving from its

humble beginnings in desktop systems to now, powering the large enterprise applications that run 

businesses across the globe. The current generation of x86 CPUs include features such as large scale 

multi-threading with 8 or more processing cores, support for large memory systems with NUMA and 

integrated memory controllers, high speed CPU interconnects and chipset for support for advanced 

reliability, availability and serviceability (RAS) features. These features were once reserved for mainframe 

and high end UNIX systems, today x86 servers with 2 or 4 sockets are replacing expensive UNIX/RISC 

systems while delivering better performance and 4 and 8 socket servers are challenging mainframe class 

systems.

While the x86 platform has evolved significantly over it's lifetime it has maintained it's core architecture to 

provide backward compatibility. A number of elements from the original architecture threatened to limit the 

growth of the x86 platform, the most significant of which was the physical address space which was limited 

to 32 bits. In 2003 Intel and AMD added 64bit extensions to address that limitation and today the x86_64 

family of processors from Intel and AMD are ubiquitous from laptops and desktops through to high end 

servers supporting large scale symmetric multiprocessing systems and terabytes of ram.

In order to provide a secure operating environment the x86 architecture provide a mechanism for isolating 

user applications from the operating system using the 

notion of privilege levels.

In this model the processor provides 4 privilege 

levels, also known as rings which are arranged in a 

hierarchical fashion from ring 0 to ring 3. Ring 0 is the 

most privileged with full access the hardware and is 

able to call privileged instructions. The operating 

system runs in ring 0 with the operating system 

kernel controlling access to the underlying hardware. Rings 1, 2 and 3 operate at a lower privilege level and 

are prevented from executing instructions reserved for the operating system. In commonly deployed 

operating systems such as Linux and Microsoft Windows the operating system runs in ring 0 and the user 

applications run in ring 3. Rings 1 and 2 historically have not used by modern commercial operating 

systems. This architecture ensures that an application running in ring 3 that is compromised cannot make



privileged system calls, however a compromise in the operating system running in ring 0 hardware exposes 

applications running in the lower privileged levels.

While this model provides benefit for traditional, “bare metal” deployments it presents challenges in a 

virtualized environment.

In a virtualized environment the hypervisor must run at the most privileged level, controlling all hardware and 

system functions. In this model the virtual machines run in a lower privileged ring, typically in ring 3.

Within ring 3 we can see the virtual machine running 

with an operating system running on virtual (emulated) 

hardware. Since the operating system was originally 

designed to run directly on hardware it expects to be 

running in ring 0 and will make privileged calls that are 

not permitted in ring 3. When the operating system 

makes these privileged calls the hardware will trap the 

instructions and issue a fault, which will typically 

destroy the virtual machine.

Much of the work performed in an x86 virtualization solution centers around handling the deprivileging of the 

operating system running in the virtual machine, moving the operating system kernel from ring 0 to ring 1 (or 

higher) this is sometimes referred to as “ring compression”.

Early x86 hypervisors such as Bochs created a fully emulated system with the x86 CPU completed emulated 

in software. This technique resulted in very poor performance so a more advanced technique was 

developed for use in the first generation of commercial x86 hypervisors.

Binary Translation

In this model, pioneered by VMware, instead of emulating the processor, the virtual machine runs directly on 

the CPU. When privilege instructions are encountered the CPU will issue a trap that could be handled by the 

hypervisor and emulated. However there are a number of x86 instructions that do not trap for example 

pushf/popf and there are some cases where the virtual machine could identify that it was running in ring 3. 

To handle these cases a technique called Binary Translation was developed. In this model the hypervisor 

scans the virtual machine memory and intercepts these calls before they are executed and dynamically 

rewrites the code in memory. The operating system kernel is unaware of the change and operates normally. 

This combination of trap-and-execute and binary translation allows any x86 operating system to run 

unmodified upon the hypervisor. While this approach is complex to implement it yielded significant 

performance gains compared to full emulating the CPU.



Paravirtualization 

While the emulation and binary-translation approached focused on how to handle a privileged instruction 

executed in a virtual machine a different approach was taken by the open source Xen project. 

Instead of handling a privileged instruction the approach with paravirtualization is to modify the guest 

operating system running in the virtual machine and replace all the privileged instructions with direct calls 

into the hypervisor. In this model, the modified guest operating system is aware that it is running on a 

hypervisor and can cooperate with the hypervisor for improved scheduling and I/O,  removing the need to 

emulate hardware devices such as network cards and disk controllers.

Since paravirtualization requires changes to the operating system it needs to be implemented by the 

operating system vendor. These changes were made to the Linux operating system initially in the form of 

custom patches to the Linux kernel and later were incorporated into the mainline Linux kernel, starting with 

Kernel 2.6.23. Linux distributions that use kernels earlier than 2.6.23, for example Red Hat Enterprise Linux 

5 use kernels with a customized set of patches.

The Xen Hypervisor Platform is comprised of two components – the Xen hypervisor which is responsible for 

the core hypervisor activities such as CPU, memory virtualization, power management and scheduling of 

virtual machines.

The Xen hypervisor loads a special, privileged virtual machine called 

Domain0 or dom0. This virtual machine has direct access to hardware 

and provides device drivers and I/O management for virtual machines.

Each virtual machine, known as an unprivileged domain or domU, 

contains a modified Linux kernel that instead of communicating directly 

with hardware interfaces with Xen hypervisor.

CPU and memory access are handled directly by the Xen hypervisor 

but I/O is directed to domain 0. The Linux kernel includes “front end” 

devices for network and block I/O. Requests for I/O are passed to the 

“back end” process in domain 0 which manages the I/O.

In this model the guest kernel in domU runs in ring 1 while user space 

runs in ring 3.

Domain 0 can be implemented using Linux, BSD or Solaris but is most commonly implemented using a 

modified Linux distribution. Red Hat, Citrix and Oracle all use a domain 0 based on Red Hat Enterprise 

Linux 5 sources with the 2.6.18 kernel.

In order to operate as domain 0 the Linux kernel has to be modified. The Xen modifications to the Linux 

domain 0 have not been incorporated into the upstream Linux kernel so all vendors shipping a Xen solution 

based on Linux maintain a forked copy of the Linux kernel.

While Xen is often categorized as being a thin “type-1” hypervisor the entire platform requires a domain 0 

operating system in order to access hardware. 



Hardware Assisted Virtuallization

Both Intel and AMD developed extensions to the x86 architecture to provide features that could be used by 

hypervisor vendors to simplify CPU virtualization. The first CPUs including these features were released late 

in 2005. Today most Intel and AMD CPUs include hardware virtualization support including desktop, laptop 

and server product lines.

The implementations of these features by Intel (VT-X) and AMD (AMD-V) are different but use a similar 

approach. A new operating mode is added to the CPU which can now operate in host mode or guest mode. 

A hypervisor can request that a process operates in guest mode, in which it will see still see the four 

traditional ring/privilege levels, but the CPU is instructed to trap privileged instructions and then return 

control to the hypervisor. 

Using these new hardware features, a hypervisor does not need to implement the binary translation that was 

previously required to virtualize privileged instructions. 

While VT-X and AMD-V reduced the overhead for virtualizing the CPU a significant amount of resources are 

expended by the hypervisor in handling memory virtualization.

Because the guest operating system cannot directly access memory the hypervisor must provide a 

virtualized memory implementation in which the hypervisor provides mapping between the physical host 

memory and the virtual memory used by the virtual machine. This is often implemented using shadow page 

tables within the hypervisor. 

AMD developed the Rapid Virtualization Indexing (RVI) feature, previously know as nested page tables, and 

Intel developed the Extended Page Table (EPT) feature. These are incorporated into the recent generation 

of Intel and AMD CPUs. These features provide a virtualized memory management unit (MMU) in hardware 

that delivers significant performance improvements compared to the software only implementation.

Both Intel and AMD continue to add new features to hardware to improve performance for virtualization, 

offloading more features from the hypervisor into “the silicon” to provide improved performance and a more 

robust platform. The current generation of Intel and AMD CPUs, and supporting chipsets, are adding support 

for I/O offload with features such as secure PCI pass-through, using Intel VT-D or AMD IOMMU, allowing 

PCI devices on the host to be passed directly into the virtual machine. Single Root I/O virtualization 

(SR/IOV) extends those features to allow special PCI devices to be split into multiple virtual PCI devices that 

can be passed through to individual virtual machines. These features allow virtual machines to achieve the 

same I/O performance as bare metal systems.

KVM

Kernel-based Virtual Machine (KVM) project represents the latest generation of open source virtualization.

The goal of the project was to create a modern hypervisor that builds on the experience of previous 

generations of technologies and leverages the modern hardware available today.



KVM is implemented as a loadable kernel module that converts the Linux kernel into a bare metal 

hypervisor. There are two key design principals that the KVM project adopted that have helped it mature 

rapidly into a stable and high performance hypervisor and overtake other open source hypervisors.

Firstly, because KVM was designed after the advent of hardware assisted virtualiaztion, it did not have to 

implement features that were provided by hardware. The KVM hypervisor requires Intel VT-X or AMD-V 

enabled CPUs and leverages those features to virtualize the CPU. 

By requiring hardware support rather than optimizing with it if available, KVM was able to design an 

optimized hypervisor solution without requiring the “baggage” of supporting legacy hardware or requiring 

modifications to the guest operating system.

Secondly the KVM team applied a tried and true adage – “don't reinvent the wheel”.

There are many components that a hypervisor requires in addition to the ability to virtualize the CPU and 

memory, for example: a memory manager, a process scheduler, an I/O stack, device drivers, a security 

manager, a network stack, etc. In fact a hypervisor is really a specialized operating system, differing only 

from it's general purpose peers in that it runs virtual machines rather than applications.

Since the Linux kernel already includes the core features required by a hypervisor and has been hardened 

into an mature and stable enterprise platform by over 15 years of support and development it is more 

efficient to build on that base rather than writing all the required components such as a memory manager, 

scheduler, etc from the ground up. 

In this regard the KVM projected benefited from the experience of the Xen. One of the key challenges of the 

Xen architecture is the split architecture of domain0 and the Xen hypervisor. Since the Xen hypervisor 

provides the core platform features within the stack, it has needed to implement these features, such as 

scheduler and memory manager from the ground up.

For example while the Linux kernel has a mature and proven memory manager including support for NUMA 

and large scale systems, the Xen hypervisor has needed to build this support from scratch. Likewise 

features like power management which are already mature and field proven in Linux had to be 

re-implemented in the Xen hypervisor.

Another key decision made by the KVM team was to incorporate the KVM into the upstream Linux kernel. 

The KVM code was submitted to the Linux kernel community in December of 2006 and was accepted into 

the 2.6.20 kernel in January of 2007. At this point KVM became a core part of Linux and is able to inherit key 

features from the Linux kernel. By contrast the patches required to build the Linux Domain0 for Xen are still 

not part of the Linux kernel and require vendors to create and maintain a fork of the Linux kernel. This has 

lead to an increased burden on distributors of Xen who cannot easily leverage the features of the upstream 

kernel. Any new feature, bug fix or patch added to the upstream kernel must be back-ported to work with the 

Xen patch sets.

In addition to the broad Linux community KVM is supported by some of the leading vendors in the software 

industry including Red Hat, AMD, HP, IBM, Intel, Novell, Siemens, SGI and others 



KVM ARCHITECTURE

In the KVM architecture the virtual machine is implemented as regular Linux process, schedule by the 

standard Linux scheduler. In fact each virtual CPU appears as a regular Linux process. This allows KVM to 

benefit from all the features of the Linux kernel.

Device emulation is handle by a modified version of QEMU that 

provides an emulated BIOS, PCI bus, USB bus and a standard set of 

devices such as IDE and SCSI disk controllers, network cards, etc.

Security

Since a virtual machine is implemented as a Linux process it 

leverages  the standard Linux security model to provide isolation and 

resource controls. The Linux kernel includes SELinux 

(Security-Enhanced Linux) a project developed by the US National 

Security Agency to add mandatory access controls, multi-level and 

multi-category security as well as policy enforcement. SELinux 

provides strict resource isolation and confinement for processes 

running in the Linux kernel. The sVirt project builds on SELinux to 

providean infrastructure to allow an administrator to define policies for 

virtual machine isolation. Out of the box sVirt ensures that a virtual machines resources can not be 

accessed by any other process (or virtual machine) and this can be extended by the administrator to define 

fine grained permissions, for example to group virtual machines together to share resources.

Any virtual environment is only as secure as the hypervisor itself, as organizations look to deploy 

virtualization more pervasively throughout their infrastructure security becomes a key concern, even more so 

in cloud computing environments. The hypervisor is undoubtedly a tempting target for hackers as an 

exploited hypervisor could lead to the compromise of all virtual machines it is hosting, in fact we have 

already seen hypervisor exploits for example the “Invisible Things Lab” exploit in 2008 where a Xen domU 

was able to compromise the domain0 host. SELinux and sVirt provide an infrastructure that provides a level 

of security and isolation unmatched in industry.

Memory Management

KVM inherits the powerful memory management features of Linux  

The memory of a virtual machine is stored as memory is for any other 

Linux process and can be swapped, backed by large pages for better 

performance, shared or backed by a disk file.

NUMA support allows virtual machines to efficiently access large 

amounts of memory.



KVM supports the latest memory virtualization features from CPU vendors with support for Intel's Extended 

Page Table (EPT) and AMD's Rapid Virtualization Indexing (RVI) to deliver reduced CPU utilization and 

higher throughput.

Memory page sharing is supported through a kernel feature called Kernel Same-page Merging(KSM).  

KSM scans the memory of each virtual machine and where virtual machines have identical memory pages 

KSM merges these into a single page that it shared between the virtual machines, storing only a single copy. 

If a guest attempts to change this shared page it will be given it's own private copy. 

When consolidating many virtual machines onto a 

host there are many situations in which memory 

pages may be shared – for example unused 

memory within a Windows virtual machine, 

common DLLs, libraries,  kernels or other objects 

common between virtual machines.

With KSM more virtual machines can be 

consolidated on each host, reducing hardware 

costs and improving server utilization.  

Hardware support

Since KVM is a part of Linux it leverages the entire hardware ecosystem, so any hardware device supported 

by Linux can be used by KVM. Linux enjoys one of the largest ecosystem of hardware vendors and the 

nature of the open source community, where hardware vendors are able to participate in the development of 

the Linux kernel, ensures that the latest hardware features are rapidly adopted in the Linux kernel, allowing 

KVM to utilize a wide variety of hardware platforms.

As new features are added to the Linux kernel KVM inherits these without additional engineering and the 

ongoing tuning and optimization of Linux immediately benefits KVM. 

Storage 

KVM is able to use any storage supported by Linux to store virtual machine images, including local disks 

with IDE, SCSI and SATA, Network Attached Storage (NAS)  including NFS and SAMBA/CIFS or SAN with 

support for iSCSI and Fiber Channel. Multipath I/O may be used to improve storage throughput and to 

provide redundancy. Again, because KVM is part of the Linux kernel it can leverage a proven and reliable 

storage infrastructure with support from all the leading storage vendors with a storage stack that has been 

proven in production deployments worldwide.



KVM also supports virtual machine images on shared file systems such as the Global File System (GFS2) to 

allow virtual machine images to be shared between multiple hosts or 

shared using logical volumes.

Disk images support thin provisioning allowing improved storage utilization 

by only allocating storage when it is required by the virtual machine rather 

than allocating the entire storage up front.

The native disk format for KVM is QCOW2 which includes support for 

snapshots allowing multiple levels of snapshots, compression and encryption.

Live Migration

KVM supports live Migration which provides the ability to move a 

running virtual machine between physical hosts with no interruption to 

service.

Live Migration is transparent to the end user, the virtual machine 

remains powered on, network connections remain active and user 

applications continues to run while the virtual machine is relocated to a 

new  physical host.

In addition to live migration KVM supports saving a virtual machine's 

current state to disk to allow it to be stored and resumed at a later time.

Guest Support

KVM supports a wide variety of guest operating systems, from mainstream operating systems such as Linux 

and Windows to other platforms including OpenBSD, FreeBSD, OpenSolaris, Solaris x86 and MS DOS.

In Red Hat's enterprise offerings, KVM has been certified under Microsoft's Server Virtualization Validation 

Program (SVVP) to ensure users deploying Microsoft Windows Server on Red Hat Enterprise Linux and Red 

Hat Enterprise Virtualization Hypervisor (RHEV-H) will receive full commercial support from Microsoft.

Device Drivers 

KVM supports hybrid virtualization where paravirtualized drivers are installed in the guest operating system 

to allow virtual machines to use an optimized I/O interface rather than emulated devices to deliver high 

performance I/O for network and block devices.

The KVM hypervisor uses the VirtIO standard developed by IBM and Red Hat in conjunction with the Linux 



community for paravirtualized drivers which is a hypervisor independent interface for building device drivers 

allowing the same set of device drivers to be used for multiple hypervisors, allowing for better guest

interoperability. Today many hypervisors use proprietary interfaces for paravirtualized device drivers which 

means that guest images are not portable between hypervisor platforms. As more vendors adopt the VirtIO 

framework guest images will become more easily transferable between platforms and reduce certification 

testing and overhead.

VirtIO drivers are included in modern Linux kernels (later than 2.6.25), included in Red Hat Enterprise Linux 

4.8+, 5.3+ and available for Red Hat Enterprise Linux 3.

Red Hat had developed VirtIO drivers for Microsoft Windows guests for optimized network and disk I/O that 

have been certified under Microsoft's Windows Hardware Quality Labs certification program (WHQL).

Performance and Scalability

KVM inherits the performance and scalabiltiy of Linux, supporting virtual machines with up to 16 virtual 

CPUs and 256GB of ram and host systems with 256 cores and over 1TB or RAM.

With up to 95%-135% performance relative to bare metal for real-world enterprise workloads like SAP, 

Oracle, LAMP and Microsoft Exchange; more than 1 million messages per second and sub 200 micro-

second latency in virtual machines running on a standard server; and the highest consolidation ratios with 

more than 600 virtual machines running enterprise workloads on a single server, KVM allows even the most 

demanding application workloads to be virtualized. 

Improved scheduling and resource control

In the KVM model, a virtual machine (Windows or Linux) is a Linux process. It is scheduled and managed by 

the standard Linux kernel. Over the past several years, the community has advanced the core Linux kernel 

to a point where it has industry leading features, performance stability, security and enterprise robustness. 

The current version of the Red Hat Enterprise Linux kernel supports setting relative priorities for any process 

including virtual machines. This priority is for an aggregate measure of CPU, memory, network and disk IO 

for a given virtual machine, and provides the first level of Quality of Service (QoS) infrastructure for virtual 

machines. 

The modern Linux scheduler accrues some further enhancements that will allow a much finer-grain control 

of the resources allocated to a Linux process and will allow guaranteeing a QoS for a particular process. 

Since in the KVM model, a virtual machine is a Linux process, these kernel advancements naturally accrue 

to virtual machines operating under the KVM architectural paradigm. Specifically, enhancements including 

CFS, control-groups, network name spaces and real-time extensions will form the core kernel level 

infrastructure for QoS, service levels and accounting for VMs. 



The Linux kernel includes a new advanced process scheduler called the completely fair scheduler (CFS) to 

provide advanced process scheduling facilities based on experience gained from large system deployments. 

The CFS scheduler has been extended to include the CGroups (control groups) resource manager that 

allows processes, and in the case of KVM – virtual machines, to be given shares of the system resources 

such as memory, cpu and I/O. Unlike other virtual machine schedulers that give proportions of resources to 

a virtual machine  based on weights, cgroups allow minimums to be set not just maximums, allowing 

guaranteed resources to a virtual machine but allowing the virtual machine to use more resources if 

available. Network name-spaces is a similar kernel-level infrastructure that allows finer grain controls and 

guarantees a minimum network SLA for a given virtual machine.

These advanced features in the kernel allow resource management and control at all levels – CPU, memory, 

network and I/O.

Lower latency and higher determinism

In addition to leveraging the new process scheduler and resource management features of the kernel to 

guarantee the CPU, memory, network and disk IO SLA for each VM, the Linux kernel will also feature real-

time extensions. These allow much lower latency for applications in virtual machines, and a higher degree of 

determinism which is important for mission critical enterprise workloads. Under this operating model, kernel 

processes that require a long CPU time slice are divided into smaller components and scheduled/processed 

accordingly by the kernel. In addition, mechanisms are put in place that allow interrupts from virtual 

machines to be prioritized better than if long kernel processes were to consume more CPU. Hence, requests 

from virtual machines can be processed faster, thereby significantly reducing application processing latency 

and improving determinism. 
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