

Trusted RUBIXTM

Version 6

RELATIONAL DATABASE MANAGEMENT SYSTEM

Infosystems Technology, Inc.

4 Professional Dr - Suite 118

Gaithersburg, MD 20879

TEL +1-202-412-0152

SELinux Guide

Revision 8

© 2012 Infosystems Technology, Inc. 6.0 REVISION 8

© 1981, 2012 Infosystems Technology, Inc. (ITI). All rights reserved. Unpublished work.

Commercial computer software and software documentation: Government users are subject to

ITI's standard license agreement per DFARS 227.7203-3 or, in non-DoD agencies where such

protection is unavailable, to "restricted rights" under applicable FAR System clauses.

Infosystems Technology, Inc.

4 Professional Dr - Suite 118

Gaithersburg, MD 20879

THIS DOCUMENTATION CONTAINS CONFIDENTIAL INFORMATION AND TRADE

SECRETS OF INFOSYSTEMS TECHNOLOGY, INC. USE, DISCLOSURE, OR

REPRODUCTION IS PROHIBITED WITHOUT THE PRIOR EXPRESS WRITTEN

PERMISSION OF INFOSYSTEMS TECHNOLOGY, INC. FOR FULL DETAILS OF THE

TERMS AND CONDITIONS FOR USING THE SOFTWARE, PLEASE REFER TO THE ITI-

TRUSTED RUBIX USER LICENSE AGREEMENT.

The information in this document is subject to change without notice and should not be construed as a

commitment by ITI.

Infosystems Technology, Inc. assumes no responsibility for any errors that may appear in this

document.

RUBIX ® is a trademark of Infosystems Technology, Inc.

UNIX
®
 is a trademark of The Open Group.

Printed in U.S.A.

Table of Contents

© 2012 Infosystems Technology, Inc. 6.0 REVISION 8

INTRODUCTION ... 1

SELINUX OVERVIEW ... 1

SELINUX CONTEXT ... 3
OBJECT CLASSES AND PERMISSIONS ... 4
DECLARING SELINUX ROLES AND TYPES.. 4
ROLE TRANSITIONS ... 5

Using the newrole Command ... 5
RDBMS Role Transition Example .. 6

TYPE ENFORCEMENT RULES ... 7
Declaring and Using Attributes ... 8
RDBMS Type Enforcement example ... 9

OBJECT LABELING RULES ... 10
RDBMS Object Labeling Example ... 11

DOMAIN TRANSITIONS .. 13
AUDITING RULES .. 14
TARGETED AND MLS (STRICT) POLICIES ... 15
PERMISSIVE AND ENFORCING MODES .. 15
OBSERVING SELINUX DENIALS .. 15

TRUSTED RUBIX ROLES .. 16

USING OS ROLES TO OPERATE TRUSTED RUBIX .. 17
TRUSTED RUBIX DEFAULT ROLES ... 19
ASSIGNING ROLES TO USERS .. 20

TRUSTED RUBIX SELINUX POLICY ... 22

OVERVIEW .. 22
THE RUBIX-BASE POLICY MODULE ... 23

RDBMS Objects and Permissions .. 23
RDBMS Object Sets ... 24
Role Based Interfaces .. 25
RDBMS Object Permission Interfaces .. 26

Default Object Set Interfaces ... 26
User Defined Object Set Interfaces .. 27
Utility Interfaces .. 27

Domain Attributes and Types ... 27
Domain Attributes ... 28
Domain Types .. 28

RDBMS Object Attributes and Types ... 29
RDBMS Object Attributes... 29
RDBMS Object Types For the Default Object Set ... 29
RDBMS Object Type Interfaces .. 30

RDBMS Object TE Rules in rubix-base Policy ... 30
THE RUBIX-DEV POLICY MODULE .. 31

Default rubix-dev Policy .. 31
Default Roles of the rubix-dev Policy ... 31
Default Object Sets of the rubix-dev Policy ... 32
Remote Connection Rules of the rubix_dev Policy .. 34

Building and Installing Custom Policy ... 34

SELinux Guide

© 2012 Infosystems Technology, Inc. 6.0 REVISION 8

1

Introduction

This document provides an overview of the SELinux security mechanism as it relates to the Trusted

RUBIX Relational Database Management System (RDBMS). It also provides a guide to using the

Trusted RUBIX SELinux policy to create custom RDBMS policies.

This guide is not meant to be an exhaustive reference for SELinux. Many of the SELinux policy

language rules are not included in this document. For more information on SELinux please consult

the following resources.

The book SELinux by Example (ISBN: 0-13-196369-4) provides a good, but somewhat outdated,

introduction to using and configuring SELinux.

For more information about the SELinux policy on RHEL6 see the following URL:

https://access.redhat.com/knowledge/docs/Red_Hat_Enterprise_Linux/

For more recent information about SELinux see the SELinux Notebook at the following URL:

http://www.freetechbooks.com/the-selinux-notebook-the-foundations-t785.html

For more information about the SELinux policy on Fedora see the following URL:

http://docs.fedoraproject.org/selinux-user-guide/f13/en-US/

General information about SELinux, including an active mailing list, may be found at:

http://www.nsa.gov/research/selinux/

Active mail lists exist where specific questions may be answered. Information about the general

SELinux mailing list may be found at:

http://www.nsa.gov/research/selinux/list.shtml

SELinux Overview

SELinux is a security policy enforcement mechanism integrated into the Linux operating system. It is

based upon the Flask security model. The SELinux security model assigns every Linux object (file,

directory, socket, process, etc.) an object class and a set of operations, also called permissions, on the

object class. The model assigns a type to each instantiated subject and object. The type assigned to

each instantiated subject (e.g., process) is generally referred to as a domain or a domain type. The

heart of the SELinux mechanism is a set of rules that define which operations a subject with a specific

domain may perform given the target object's class and type. The enforcement of these rules is known

as Type Enforcement (TE). The sum of these rules basically constitutes a large access control list

(ACL) for object class operations, domains, and object types. Each element in the ACL would

indicate, with a permit or deny, if a subject with the given domain is able to perform the operation

upon an object with the given object class and type. SELinux denies an operation unless there is a

specific TE rule permitting it. In addition to TE rules that allow or deny an operation, rules also exist

http://www.selinuxbyexample.com/
https://access.redhat.com/knowledge/docs/Red_Hat_Enterprise_Linux/
http://www.freetechbooks.com/the-selinux-notebook-the-foundations-t785.html
http://docs.fedoraproject.org/selinux-user-guide/f13/en-US/
http://www.nsa.gov/research/selinux/
http://www.nsa.gov/research/selinux/list.shtml

SELinux Guide

© 2012 Infosystems Technology, Inc. 6.0 REVISION 8

2

that determine how types are assigned to subjects and objects (i.e., how subjects and objects are

labeled).

Each subject and object is assigned a string based security label called a context. The context consists

of four components: the SELinux user, the role, the type (or domain), and a Multi-level

Security/Multi-Category Security (MLS/MCS) level range. An object's context is calculated and

assigned when the object is created and is generally static. A subject's context typically changes

during the subject's session. All components except the SELinux user may change. Changes to a

subject's context occur through the execution of programs that are configured to cause a context

transition (when a specially configured program is executed) or through an explicit user command

(e.g., the newrole or sudo command).

The SELinux user is assigned during login and may not change during the session It is distinct from

and should not be confused with the traditional Linux login user. Linux login users are mapped to a

single SELinux user while each SELinux user may be associated with multiple Linux login users.

Each SELinux user has an associated set of roles and a subject may assume a role only if the role is

associated with its SELinux user. Therefore, the SELinux user bounds the potential set of roles a

subject may assume.

At any given time a subject is assigned a single role. Each role has an associated set of types and a

subject may transition to a type only if the type is associated with its role. Furthermore, a subject may

only transition from one role to another role if rules are defined allowing the transition. Therefore, a

subject's role, along with the SELinux policy rules, defines which type and role transitions may occur.

A subject's initial role is either explicitly set upon login or is taken from the assigned default role.

In addition to TE rule enforcement, SELinux also optionally enforces multi-level security (MLS) or

multi-category security (MCS). MLS enforce a Bell-Lapadula policy over subjects and objects. MCS

is similar to MLS in that all levels are restricted to a single sensitivity level with multiple categories.

Additionally, MCS is a discretionary policy allowing an object owner to set the categories for that

object1. For an operation to be permitted the TE rules and the MLS/MCS rules must both be satisfied.

A bounding level-range is defined for each SELinux user.

The SELinux policy rules are specified as a text based scripting language and are compiled before

being installed to a system. Type Enforcement rules, SELinux users, roles, types, and MLS rules may

all be defined within the policy. As policy behavior generally is defined for all subjects and objects in

a system, the policy code base may be large. To simplify policy development, interfaces (analogous

to procedure calls) are used to provide a more programmatic environment for creating complex

policies. The open source Reference Policy, which serves as a basis for developing policies for

specific operating systems, and several open source policy development tools are maintained by

Tresys Technology. The SELinux base policy and policy modules for specific applications are

available as installable packages and as source code. Custom security policy modules may be written

and installed by the security administrator, including policy modules that customize the security

behavior of the Trusted RUBIX RDBMS.

The Trusted RUBIX RDBMS is SELinux security enforcing software. It interacts with the SELinux

functionality of the underlying operating system to extend SELinux security controls to all Trusted

1
 Trusted RUBIX does not support the discretionary aspects of the MCS policy; that is, an owner of a

Trusted RUBIX RDBMS object may not change the MCS categories associated with that object.

http://oss.tresys.com/projects

SELinux Guide

© 2012 Infosystems Technology, Inc. 6.0 REVISION 8

3

RUBIX RDBMS subjects and objects. SELinux policy rules may be added to the operating system’s

SELinux policy repository that will define the security behavior for the RDBMS subjects and objects.

Custom SELinux roles and security behavior may be created that will define the security behavior

over both operating system and RDBMS objects, allowing for a coherent security policy across all

objects on the platform.

SELinux Context

Each subject and object in the system is assigned an SELinux context (security label). The context is

string based and consists of four parts: the SELinux user, the role, the type (or domain), and the

MLS/MCS level range. The following is an example of an SELinux context:

user_u:user_r:user_t:s0-s15:c0.c1023

The first component, user_u, is the SELinux user. The SELinux user is distinct from and should not

be confused with the traditional Linux login user. It is assigned during login and may not change

during the session. Linux login users are mapped to a single SELinux user and assume that SELinux

user at login. SELinux users have a set of permitted roles associated with them. For objects, the

SELinux user component of its context generally represents the SELinux user that created the object.

The second component, user_r, is the SELinux role. The subject’s current role may change during a

login session, generally by an explicit command (e.g., newrole). The current role defines which

domain types may be assumed and to which roles it may transition. If a type is not valid for a given

role, the corresponding context is considered invalid and no object or subject may be assigned that

context. For objects, the role is generally set to object_r and has no special significance.

The third component, user_t, is the SELinux type. The subject's current type, along with the SELinux

Type Enforcement rules, define which object class permissions it has. A subject's type is assigned at

login and may change either through an explicit command or while executing programs through TE

type transition rules. The object's type, the subject's domain type, and the TE rules, control which

operations a subject may perform. An object's type is generally calculated during its creation based

upon the creating subject's type and the parent object's type. File system objects may be explicitly

typed using regex rules written upon the object's path.

The last component, s0-s15:c0.c1023, is the SELinux MLS/MCS level range. The level range bounds

the operations of the subject. For our example the low end of the range is s0 and the high end of the

range is s15:c0.c1023. The low end of the range is the subject's current session level and the high end

of the range represents its clearance. The example level given is in its raw format. In this format the

sensitivity component of the level is given by the ‘s’ component where s0 < s1 < s2 etc (the '<'

symbol represents a "strictly dominated by" relationship) . The categories are given by the ‘c’

component. The value c0.c1023 represents all categories between category c0 and category c1023

inclusive (the ‘.’ represents an inclusive range of categories) while c1,c5 would represent category c1

and category c5 (the comma represents a list of categories). In addition to raw level formats, if the

mcstrans level translation service is installed and enabled, user friendly level names may be used such

as SystemHigh. These may be configured using the SELinux Management tool. While the SELinux

MLS functionality does not require a Bell-Lapadula policy, this is currently the only SELinux MLS

functionality available and the only one compatible with the Trusted RUBIX RDBMS.

It is common practice, but not a requirement, to use the _u, _r, and _t suffix for SELinux users, roles,

SELinux Guide

© 2012 Infosystems Technology, Inc. 6.0 REVISION 8

4

and types respectively.

An important concept regarding the SELinux context is its validity. In order for a context to be valid

the following must be true:

 The SELinux user must exist in the system

 The role must be associated with the SELinux user

 The type must be associated with the role

 The MLS level range must contain valid levels for the system and the SELinux user

A new context is created when an object is labeled and when a domain context transition occurs.

Often, the security is enforced simply by validating the resultant context and rejecting the operation if

the context is invalid. For instance, when a role transition occurs (e.g., when the newrole command is

invoked) the new role must be associated with the SELinux user. Additionally, when a domain type

transition occurs (e.g., when a program is executed with associated domain transition rules) the new

domain type must be valid for the given role.

Object Classes and Permissions

Every SELinux-protected object in the operating system has an associated object class and each

object class has an associated permissions vector. The permissions vector defines the operations that

are performed on the object and are used in TE rules to control access. An example is the file object

class. The file object class has a permissions vector that includes create, append, getattr, read, write,

and others. The set of object classes may be found in the /usr/include/selinux/flask.h header file. A list

of permissions may be found in /usr/include/selinux/av_permissions.h header file. Object classes and

permissions are generally fixed and may not be defined in custom policy modules.

There are a set of RDBMS object classes (e.g., db_table) and permissions (e.g., select, insert) that are

used by Trusted RUBIX to control access to RDBMS objects. RDBMS object classes and

permissions used by Trusted RUBIX are enumerated later in this document.

Declaring SELinux Roles and Types

Before using a specific role or type it must first be declared in the policy.

A role declaration is performed using the role declaration statement. The syntax for the role statement

follows:

role role_name [types type_set];

The following example shows the declaration of a role named rubix_user_r:

role rubix_user_r;

The role statement is also used to define the set of types that are valid for the role. If a type is not

valid for a role then it may not co-exist with the role in any context. In such cases the context creation

will fail as will the associated operation. The set of types may be included on the initial role

declaration or in any number of subsequent role rules. An example role declaration that associates the

rubix_user_t and the user_t types with the rubix_user_r role follows. If the rubix_user_r had not been

SELinux Guide

© 2012 Infosystems Technology, Inc. 6.0 REVISION 8

5

previously declared then this rule would also declare it.

role rubix_user_r types rubix_user_t, user_t;

A type declaration is performed using the type declaration statement. The syntax for the type

statement follows:

type type_name [alias alias_set] [, attribute_set];

The following example shows the declaration of a type named rubix_user_t:

type rubix_user_t;

An alias set for the type name may be optionally assigned in the type statement. An alias may be used

in lieu of the type name in subsequent rules and statements. There is a one-to-one relationship

between an alias and a type name. Attributes may also be associated with a type using the type

statement as discussed later in this document. There is a many-to-many relationship between

attributes and type names.

An alias may be declared for a pre-defined type using the typealias statement as follows:

typealias rubix_user_t dbms_user;

Role Transitions

An SELinux user represents a bounded set of roles a subject may assume. An SELinux role represents

a bounded set of types that a subject may “reach." When a Linux user initiates a session it is assigned

an SELinux user according a to one-to-one mapping in the policy. The assigned SELinux user will

have a set of roles associated with it, one being a default role. The default role is initially assigned to

the subject. Other roles in the SELinux user’s role set may be assumed through a role transition.

In order for a role transition to be permitted a corresponding role allow rule must exist in the policy.

The syntax for the role allow rule is:

allow source_role_set target_role_set;

If multiple entries are specified in a role set they must be enclosed in braces ({}). The role allow rule

permits every role in the source role set to transition to a role in the target role set. An example role

allow rule is:

allow rubix_staff_r {rubix_dbadmin_r rubix_secadmin_r};

This rule permits the subjects in the rubix_staff_r role to transition to the rubix_dbadmin_r and

rubix_secadmin_r roles.

USING THE newrole COMMAND

For the purposes of using Trusted RUBIX, role transitions generally occur through the use of the

newrole command.

Roles may be assumed by logging in as a user with the desired role configured to be the user’s default

SELinux Guide

© 2012 Infosystems Technology, Inc. 6.0 REVISION 8

6

role or by using the newrole command. If the newrole command is not available you may need to

install the policycoreutils-newrole package.

To use the newrole command to assume a new role there must be SELinux policy rules that allow

transition from the source role to the target role. By default, Trusted RUBIX allows the administrative

and client roles to be reached from all Linux login roles (e.g., unconfined_r, user_r) roles. Therefore,

Trusted RUBIX roles may be distributed, according to security requirements, using SELinux user

definitions and their mappings to Linux login users. Note that the unconfined_r is only available

while using the Targeted policy.

As an example, to reach the rubix_dbadm_r role first become the user_r or unconfined_r role. This is

usually accomplished by having the user_r or unconfined_r be the default role of a login user. Then

the newrole command is used to assume the new role as follows:

newrole -r rubix_dbadm_r

Additionally, the newrole command may be used to change the current type or MLS/MCS level.

Role transition rules may be given through using the SELinux base policy interface as follows:

userdom_role_change_template(source_role_prefix, dest_role_prefix)

See the /var/lib/RUBIXdbms/etc/selinux/rubix-dev.te policy source file for examples of its use.

RDBMS ROLE TRANSITION EXAMPLE

The following diagram illustrates a user logging into the system and transitioning to a role that is able

to execute Trusted RUBIX operations. The text box in the lower left corner contains actual SELinux

policy rules that correspond to the diagram.

Step 1: Linux user Bob logs into the operating system. During login, the Linux user Bob is mapped to

the SELinux user dbadm_u.

Step 2: An initial SELinux context is automatically constructed for user Bob. The SELinux user

component is from Step 1, dbadm_u; the role component is the default role for the dbadm_u

SELinux user, staff_r; the type component is the default type for the staff_r role, staff_t; the

MLS/MCS level range is taken from the dbadm_u SELinux user configuration and is s0-s0.

Note that if the high and low level ranges are the same, they are displayed as a single value

(i.e., s0). The SELinux context for Bob upon login is dbadm_u:staff_r:staff_t:s0. Typically,

the staff_r role would be configured to allow some operating system administrative abilities,

but no Trusted RUBIX abilities. The user must transition into a new role to be able to perform

RDBMS duties.

Step 3: The user Bob explicitly transitions to one of the reachable Trusted RUBIX roles: rubix_op_r,

rubix_dbadm_r, or rubix_auditadm_r. According to the SELinux policy rules, these are the

only three roles that may be reached from the staff_r role. In our example, the user would use

the operating system newrole command to explicitly transition to a role. Once the user

transitioned to that role, he would be able to perform Trusted RUBIX RDBMS duties

associated with that particular role, such as executing an ODBC application or performing an

administrative operation (e.g., backup the database).

SELinux Guide

© 2012 Infosystems Technology, Inc. 6.0 REVISION 8

7

Figure 1: Login and Role Transition

Type Enforcement Rules

The basic TE rule is the allow rule. The allow rule permits operations on objects of a given class set

and of types of a given type set (target_type_set) by subjects of a given domain set (source_type_set).

The syntax of the allow rule is:

allow source_type_set target_type_set : class_set perm_set ;

If a set has multiple entries it must be enclosed in braces ({ }). A type set may contain types or

attributes. A type may be excluded from the set by preceding it with a '-' (useful only if attributes are

used). All permissions in the perm_set must be valid for all object classes in the class_set.

An example allow rule is:

allow rubix_user_t rubix_table_t : db_table { select insert };

This rules allows subjects with the rubix_user_t type to perform select and insert operations on

objects of the db_table object class with a type of rubix_table_t.

To prevent an operation ever from being permitted, despite corresponding allow rules, the neverallow

SELinux Guide

© 2012 Infosystems Technology, Inc. 6.0 REVISION 8

8

rule may be used. The neverallow rule always takes precedence over an allow rule. The neverallow

rule denies operations on objects of a given class set and of types of a given type set (target_type_set)

by subjects of a given domain set (source_type_set). The syntax of the neverallow rule is:

neverallow source_type_set target_type_set : class_set perm_set ;

If a set has multiple entries it must be enclosed in braces ({ }). A type set may contain types or

attributes. A type may be excluded from the set by preceding it with a '-' (useful only if attributes are

used). A type set may also be specified as the wildcard character (*) to represent all types. All

permissions in the perm_set must be valid for all object classes in the class_set.

An example neverallow rule is:

neverallow os_user_t rubix_table_t : db_table { select insert };

This rules denies subjects with the os_user_t type to perform select and insert operations on objects

of the db_table object class with a type of rubix_table_t.

DECLARING AND USING ATTRIBUTES

An attribute is a "tag" that may be assigned to one or more types. The tag may then be used to refer to

all associated types in subsequent policy statements and rules. A type may have more than one

associated attribute and an attribute may be assigned to more than one type. Once declared and

associated with types, an attribute may be referred to in TE rules (by replacing the type) to define

security behavior for all types associated with the attribute. For example, base SELinux policy defines

an attribute named domain. The domain attribute is associated with all types that are associated with

subjects. TE allow rules may then be added to control all domain types as a whole. To declare an

attribute the attribute statement is used. Though not required, it is general convention that attribute

names do not have any suffix (e.g., there is no "_a" at the end of the name).

The syntax of the attribute statement is:

attribute attribute_name;

For example, the following statement declares an attribute called rubix_sys_table:

attribute rubix_sys_table;

The attribute may then be assigned to types using the type statement as the following example shows:

type rubix_sys_table_t rubix_sys_table;

If an attribute and type have already been declared, the typeattribute statement may be used to assign

an attribute to a type as follows:

typeattribute rubix_table_t rubix_table;

To allow a subject with the sys_user_t domain type to select from all tables whose types have the

rubix_sys_table attribute, the following allow rule may be used:

allow sys_user_t rubix_sys_table : db_table select;

SELinux Guide

© 2012 Infosystems Technology, Inc. 6.0 REVISION 8

9

If there is a sys_user attribute associated with all system user domain types, then the following rule

may be used to allow all system users (users with domain types with the sys_user attribute) select

access to all system tables (tables with types that have the rubix_sys_table attribute):

allow sys_user rubix_sys_table : db_table select;

To exclude the os_admin_t from the above rule, assuming the os_admin_t has the sys_user attribute,

the following rule could be used:

allow {sys_user -os_admin_t} rubix_sys_table : db_table select;

RDBMS TYPE ENFORCEMENT EXAMPLE

The following diagram illustrates the TE access checks that occur as two users, Bob and Nancy,

perform a SELECT * FROM MyTab query. Bob and Nancy have logged onto the system and set their

role appropriately. Note that Bob's context has a type of rxclient1_t and Nancy's context has a type of

rxclient2_t. In our example, this will cause each user to receive a different set of rows from their

query.

The MyTab table is contained within the MySchema schema, which itself is contained within the

MyCat catalog. Trusted RUBIX catalogs and schemata are analogous to operating system directories,

in that their primary function is to store other objects. In order for the query to execute, the catalog

and schema must be searched as follows:

Step 1: Search 'MyCat' catalog. The catalog has a type of 'rxcat_t'. Both users are permitted to search

the catalog because of the following TE rule:

allow {rxclient1_t rxclient2_t} rxcat_t : dir search;

Step 2: Search 'MySchema' schema. The schema has a type of 'rxschem_t'. Both users are permitted

to search the schema because of the following TE rule:

allow {rxclient1_t rxclient2_t} rxschem_t : dir search;

Next, the MyTab table must be opened and selected from as follows.

Step 3: Open/select from 'MyTab' table. The table has a type of 'rxtable_t'. Both users are permitted

to perform this operation because of the following TE rule:

allow {rxclient1_t rxclient2_t} rxtable_t : db_table {use select};

Lastly, the query selects individual rows. Unlike the previous operations in this query (e.g., search

catalog), where a TE deny security decision would cause the query to fail, a deny on an individual

row select causes the row to be filtered from the query's result set. Note that two of the rows have a

type of rxrow1_t and two of the rows have a type of rxrow2_t.

Step 4a: Bob selects individual rows. The following TE rule allows Bob to select only rows with the

rxrow1_t type:

allow rxclient1_t rxrow1_t : db_tuple select;

SELinux Guide

© 2012 Infosystems Technology, Inc. 6.0 REVISION 8

10

Because no TE rule exist for rows of type rxrow2_t being selected by a type of rxclient1_t, rows with

that type are filtered from the result set. Bob's result set consists of Rowdata1 and Rowdata3.

Step 4b: Nancy selects individual rows. The following TE rule allows Nancy to select only rows with

the rxrow2_t type:

allow rxclient2_t rxrow2_t : db_tuple select;

Because no TE rule exist for rows of type rxrow1_t being selected by a type of rxclient2_t, rows with

that type are filtered from the result set. Nancy's result set consists of Rowdata2 and Rowdata4.

Figure 2: Type Enforcement During SELECT Operation

Object Labeling Rules

When an object is created SELinux calculates what context should be assigned to the new object. The

level portion of the context is taken directly from the subject’s session level (the low end of the

subject's level range). The role is set to object_r, and the user is set to the creating SELinux user. The

new object’s type is calculated from the type of the parent object (if any) and any applicable TE rules.

Note that all Trusted RUBIX RDBMS objects have a parent object except the database object and all

Trusted RUBIX database objects have a fixed type of rubix_db_t. The TE rule used to dynamically

calculate the context of a new object is called a type_transition rule.

SELinux Guide

© 2012 Infosystems Technology, Inc. 6.0 REVISION 8

11

If there is no applicable type_transition rule, the type of the parent object is chosen for the type of the

new object. For instance, if a RDBMS tuple (row) is being created in a table with a type of

rubix_table_t and there is no applicable type_transition rule, the type of the tuple will be

rubix_table_t.

The syntax of the type_transition object labeling rule is:

type_transition creator_type_set parent_type_set : class_set

object_type;

An example of a type_transition object labeling rules is:

type_transition rubix_user_t rubix_table_t : db_tuple

rubix_user_tuple_t;

This rule stipulates that when a subject in the rubix_user_t domain creates an object with a class of

db_tuple and the parent object has a type of rubix_table_t then the newly created object will have a

type of rubix_user_tuple_t.

A file system object may also be explicitly labeled based upon its directory path using a regular

expression statement. This is done using regular expression based rules. The configuration file that

contains these rules for the base operating system configuration is:

/etc/selinux/POLICY_TYPE/contexts/files/file_contexts

In addition, policy modules may contain their own explicit object label rules. As an example, to label

MyFile in the root directory the following rule may be used:

/MyFile system_u:object_r:my_type_t:s0

To label the MyDir directory and all files in the MyDir directory the following rule may be used:

/MyDir(/.*)? system_u:object_r:my_type_t:s0

These regular expression rules only apply to file system objects they are not applicable to Trusted

RUBIX RDBMS objects.

RDBMS OBJECT LABELING EXAMPLE

The following diagram illustrates the process of calculating the label for two database rows as they

are inserted by two different users. Both user’s have assumed their respective roles prior to

connecting to the Trusted RUBIX RDBMS. Once connected, they issue an INSERT statement, to

insert distinct rows into the MyTab table which has a type of rxtable_t (the remainder of the table’s

context is not shown).

The first user, Bob, inserts row data RowData1 and is shown in yellow while the second user, Nancy,

inserts row data RowData2 and is shown in red. Bob, has a RDBMS session context of

rxuser1_u:rxclient1_r:rxclient1_t:s0 while Nancy has a RDBMS session context of

rxuser2_u:rxclient2_r:rxclient2_t:s0.

As Bob performs his insert, Trusted RUBIX requests that SELinux create a new context for the new

row object. It does this by calling an operating system SELinux system call and passing in the parent

SELinux Guide

© 2012 Infosystems Technology, Inc. 6.0 REVISION 8

12

object’s context (MyTab’s context), Bob’s session context, and the object class (db_tuple). The

SELinux system call responds with the object’s new context. The new context will have the SELinux

user and MLS level components copied directly from the session context. The MLS level component

is taken from the low end of the level range. The row context’s role is set to object_r, as all objects

are. The type for the row’s context is calculated based upon TE rules. The relevant TE rule for Bob’s

insert is:

type_transition rxclient1_t rxtable_t : db_tuple rxrow1_t;

This rule says that when a type is requested for a new object of class db_tuple, the parent object’s

type is rxtable_t, and the creating subject’s domain is rxclient1_t then rxrow1_t will be used as the

new object’s type.

When Nancy performs her insert, the rule above has no effect because Nancy’s session type is

rxclient2_t. The rule does not apply to her operation. However, the following rule will result in

Nancy’s row having a type of rxrow2_t:

type_transition rxclient2_t rxtable_t : db_tuple rxrow2_t;

If no type_transition rule applies when a RDBMS object is created it is given the same type as its

parent object. This basic process is applied for RDBMS catalog, schema, table, view, and row

objects. The database object always has a type of rubix_db_t.

SELinux Guide

© 2012 Infosystems Technology, Inc. 6.0 REVISION 8

13

Figure 3: Object Labeling During Row Insert

Domain Transitions

A domain may transition to a new domain type by executing a program configured to cause an

automatic domain transition or by explicitly using the newrole command. The newrole command was

previously discussed. Executing a program configured to cause a domain transition results in the

executing process taking on a new domain type during the program execution. Generally, this is the

method used to give trusted programs permission to access protected objects. An example of such a

program is the passwd program. When executed the process takes on the passwd_t domain type

which allows it to access the /etc/shadow file. When the passwd program execution terminates the

process is returned to its original domain type.

To cause a domain transition to be attempted when a program is executed the type_transition domain

transition rule is used. The syntax for the type_transition domain transition rules is:

type_transition initial_domain_type exec_file_type : process

resultant_domain_type;

An example of the type_transition domain transition rule is:

type_transition user_t passwd_exec_t : process passwd_t;

SELinux Guide

© 2012 Infosystems Technology, Inc. 6.0 REVISION 8

14

This rule stipulates that when a process with the user_t domain type executes a program with an

object type of passwd_exec_t then the process should attempt to transition to the passwd_t domain

during the program's execution.

The type_transition only initiates the attempt at a domain transition. In order for the domain transition

to occur the process's new domain type (passwd_t) must have entrypoint permission to the executable

file's type (passwd_exec_t). This is given with the following allow rule:

allow passwd_t passwd_exec_t : file entrypoint;

Also, the original domain type (user_t) must have the transition permission to the resultant domain

type (passwd_t). This is given with the following allow rule:

allow user_t passwd_t : process transition;

Lastly, the original domain type (user_t) must have execute and gettattr permission to the passwd file.

This is given by the following allow rule:

allow user_t passwd_exec_t : file {getattr execute};

With regards to Trusted RUBIX, domain transitions are not an important concept for the user. Once a

Trusted RUBIX user logs onto the RDBMS, no domain transitions occur as there is no concept of

executing a program. The ability for a user to transition to special administrative domain types,

according to the transition permission, is used to test if a user may operate in one of the Trusted

RUBIX administrative roles.

Auditing Rules

By default SELinux audits all access checks that are denied but does not audit access checks that

succeed. To override these defaults the dontaudit and auditallow rules are used.

The syntax of the dontaudit rule is:

dontaudit source_type_set target_type_set : class_set perm_set;

An example use of the rule is:

dontaudit rubix_user_t rubix_tuple_t : db_tuple select;

This rule stipulates that when a domain with the rubix_user_t is denied select on an object with class

db_tuple and type rubix_tuple_t that the denial is not to be audited.

The syntax of the auditallow rules is:

auditallow source_type_set target_type_set : class_set perm_set;

An example use of the rule is:

auditallow rubix_user_t rubix_table_t : db_table use;

This rule stipulates that when a domain with the rubix_user_t is permitted to use an object with class

db_table and type rubix_table_t that the operation is to be audited.

SELinux Guide

© 2012 Infosystems Technology, Inc. 6.0 REVISION 8

15

Targeted and MLS (Strict) Policies

SELinux has two policy types that may be used with Trusted RUBIX, Targeted and MLS. The

Targeted policy creates TE rules for a limited number of sensitive system services and leaves all other

subjects in an unconfined domain. It also implements MCS security and not MLS. Because the

Targeted policy only has limited TE rule coverage, it tends to be easier to work with. That is, there

are fewer abnormal or incorrect TE access denials. Since SELinux is an all encompassing security

policy and the Linux operating system is very complex, the SELinux policy must also be complex. As

such, the SELinux policy itself tends to be a “work in progress.” Using the Targeted policy can

reduce some of the frustrations of working with SELinux. The Targeted policy is used and tested far

more than the MLS policy and tends to be updated frequently.

The MLS policy (or Strict policy) places every Linux operation under discrete TE rules. As such it

can be difficult to work with. It is highly recommended that the user become familiar with SELinux

behavior and policy modification using the Targeted policy before attempting to use the MLS policy.

The policy used by the operation system may be changed using the SELinux Management GUI tool.

It is important to note that Trusted RUBIX will enforce its RDBMS TE rules in the same manner for

the Targeted and the MLS policies. The major difference is that when using the Targeted policy only

MCS is usable within the RDBMS. MLS is only available when using the MLS policy. Also,

databases created under one policy may not be used when the policy is changed to the other.

Permissive and Enforcing Modes

SELinux may be in enforcing mode or permissive mode. In enforcing mode the policy is enforced and

operations are denied if there are no rules to permit them. In permissive mode no operations are

denied. However, if an operation is allowed that would have been denied under enforcing mode an

audit record is created. Permissive mode is useful to determine what policy rules are needed to

perform an operation. The method is to place the system into permissive mode, perform the operation,

and then observe any denied operations in the audit log. Rules may then be created based upon the

audit messages.

When the operating system is in permissive mode, Trusted RUBIX remains in enforcing mode by

default. This behavior may be changed using the configuration option selinux.enforce.force in the

/var/lib/RUBIXdbms/etc/rxconfig file. If this value is set to true (the default) the RDBMS will

continue to enforce its SELinux policy while the operating system is in permissive mode. If this value

is set to false then the RDBMS will also enter permissive mode when the operating system enters

permissive mode. Regardless of the mode, Trusted RUBIX will always enforce MLS behavior. That

is, permissive mode does not turn off the RDBMS MLS policy enforcement, only the Type

Enforcement. This is to ensure the labeling of RDBMS objects does not become inconsistent. Please

see the Trusted Facility Manual for more information.

Observing SELinux Denials

When SELinux denies an operations for a non-RDBMS operation a string log record is generally

created in the /var/log/audit/audit.log file. When SELinux denies a RDBMS operation a string log

record is produced in the /var/lib/RUBIXdbms/logs/rxserver.log file and /var/log/audit/audit.log file.

SELinux Guide

© 2012 Infosystems Technology, Inc. 6.0 REVISION 8

16

The production of such log records may be controlled with the configuration options

messages.selinux.logmsg and messages.selinux.logrow in the /var/lib/RUBIXdbms/etc/rxconfig file. If

messages.selinux.logmsg is set to true (the default) then RDBMS log records related to SELinux

enforcement will be produced in the rxserver.log file; otherwise, no log records related to SELinux

enforcement will be produced. If messages.selinux.logrow is set to false (the default) then rows that

are filtered out of a select due to SELinux denials will not be logged in the rxserver.log file;

otherwise such SELinux denials will result in a log record being produced (if

messages.selinux.logmsg is also true). Since the SELinux denial of a row select may be a common

and expected action and the potential number of such denials is large, the default behavior is not to

log the denials so that the log does not become flooded.

Note that the Linux tools ausearch and aureport may be used to query the Linux audit trail.

Trusted RUBIX Roles

SELinux roles are used to authorize users to perform Trusted RUBIX administrative and SQL

operations. Role configuration is performed by the rubix-dev SELinux policy module that is installed

by the rubix-policy-devel package. Default role configurations of the rubix-dev policy are described

later in this document. This policy may be customized according to local security requirements.

Note that despite authorizations assigned to a role via SELinux Type Enforcement, the user still needs

to meet the additional requirements of the Discretionary Access Control (DAC), Multilevel Security

(MLS), and Attribute Based Access Control (ABAC) security policies.

To use any feature of Trusted RUBIX, including connecting to a database, a user must assume a

proper role. Trusted RUBIX roles were created during the installation of the rubix-dev policy. Trusted

RUBIX roles all have a `rubix` prefix. Additionally, default operating system roles are conditionally

given Trusted RUBIX authorizations, based upon SELinux Boolean variables. As discussed latter in

this document, Boolean variables may be dynamically set on or off controlling whether the operating

system roles have the authorizations.

Roles may be assumed by logging in with the desired role configured as the default or by using the

newrole or sudo command. If the newrole command is not available you may need to install the

policycoreutils-newrole package. The newrole command may also be used to change the current type

or MLS/MCS level.

To transition to a new role there must be SELinux policy rules that allow transition from the source

role to the target role. Additionally, the SELinux user must permit the target role. By default, the

Trusted RUBIX rubix-dev policy allows role transactions from every operating system login role

(e.g., unconfined_r, user_r) to every Trusted RUBIX role (e.g., rubix_client_r, rubix_dbadm_r).

Therefore, the distribution of Trusted RUBIX roles may be controlled through the SELinux user

configuration.

Typically, a user will login to the system and be assigned a default operating system login role. The

default login roles are unconfined_r (Targeted policy) and user_r (MLS policy). The `id –Z`

command may be used to determine the current role. The user may then use newrole or sudo to

transition to a Trusted RUBIX role. The following commands demonstrate a transition from the

unconfined_r role to the rubix_dbadm_r role:

SELinux Guide

© 2012 Infosystems Technology, Inc. 6.0 REVISION 8

17

[rxdev@RHEL6~]$ id -Z
rxdev_u:unconfined_r:unconfined_t:SystemLow-SystemHigh
[rxdev@RHEL6 ~]$ newrole -r rubix_dbadm_r
Password:
[rxdev@RHEL6 ~]$ id -Z
rxdev_u:rubix_dbadm_r:rubix_dbadm_t:SystemLow-SystemHigh

Using OS Roles to Operate Trusted RUBIX

The Trusted RUBIX rubix-dev policy gives authorizations to operating system login roles. These

roles were creating by installing the operating system Targeted and MLS SELinux policies.

Therefore, Trusted RUBIX may be used without assuming a Trusted RUBIX role. The authorizations

are conditional upon the SELinux Boolean variables, rubix_use_os_client_roles and

rubix_use_os_adm_roles. If the variables are set to `on` then the roles will have the Trusted RUBIX

authorizations. If the variables are set to `off` then the roles will have no Trusted RUBIX

authorizations and the Trusted RUBIX roles must be used. Examples of getting and setting a Boolean

value follow (note the root user):

[root@RHEL6 ~]# getsebool rubix_use_os_adm_roles
rubix_use_os_adm_roles --> on
[root@RHEL6 ~]# setsebool -P rubix_use_os_adm_roles off

The following table gives an overview of the Type Enforcement authorizations given to login

operating system roles by the default rubix-dev policy.

Operating System Role Operations Permitted by Type

Enforcement

(MLS & DAC still enforced)

Boolean Variable Used to

Control Authorizations

unconfined_r

(Targeted policy only)
 Client connect (rxisql & ODBC)

 All SQL DML & DDL operations for default

object set

 Import & export (rximport/rxexport)

 rubix_use_os_client_roles

user_r  Client connect (rxisql & ODBC)

 All SQL DML & DDL operations for default

object set

 Import & export (rximport/rxexport)

 rubix_use_os_client_roles

SELinux Guide

© 2012 Infosystems Technology, Inc. 6.0 REVISION 8

18

Operating System Role Operations Permitted by Type

Enforcement

(MLS & DAC still enforced)

Boolean Variable Used to

Control Authorizations

sysadm_r
(Targeted policy only)

 Client connect (rxisql & ODBC)

 All SQL DML & DDL operations for default

and objset1 object sets

 CREATE CATALOG for default object set

 Import & export (rximport/rxexport)

 Create database (rxisql)

 Drop database (rxdb)

 Backup database (rxdump)

 Restore databases (rxrestore)

 Supersede the SQL DAC policy

 Operate dispatcher (rxsvrman)

 Terminate servers (rxsvrman)

 SPM policy management (rxpolman)

 Session context assignment

 Object context assignment

 Configure auditing (rxauditset)

 Read audit trail (rxauditrpt)

 rubix_use_os_adm_roles

sysadm_r
(MLS policy only)

 Client connect (rxisql & ODBC)

 All SQL DML & DDL operations for default

object set

 CREATE CATALOG for default object set

 Import & export (rximport/rxexport)

 Create database (rxisql)

 Drop database (rxdb)

 Backup database (rxdump)

 Restore databases (rxrestore)

 Supersede the SQL DAC policy

 Operate dispatcher (rxsvrman)

 Terminate servers (rxsvrman)

 rubix_use_os_adm_roles

staff_r  Client connect (rxisql & ODBC)

 All SQL DML & DDL operations for default

object set

 Import & export (rximport/rxexport)

 Backup database (rxdump)

 Operate dispatcher (rxsvrman)

 Terminate servers (rxsvrman)

 rubix_use_os_adm_roles

auditadm_r
(MLS policy only)

 Client connect (rxisql & ODBC)

 All SQL DML & DDL operations for default

object set

 Import & export (rximport/rxexport)

 Configure auditing (rxauditset)

 Read audit trail (rxauditrpt)

 rubix_use_os_adm_roles

secadm_r
(MLS policy only)

 Client connect (rxisql & ODBC)

 All SQL DML & DDL operations for default

object set

 Import & export (rximport/rxexport)

 SPM policy management (rxpolman)

 Session context assignment

 Object context assignment

 rubix_use_os_adm_roles

SELinux Guide

© 2012 Infosystems Technology, Inc. 6.0 REVISION 8

19

Trusted RUBIX Default Roles

Trusted RUBIX roles are created by the rubix-dev policy during the installation of rubix-policy-devel

package. The roles have a `rubix` prefix and may be used to operate the Trusted RUBIX RDBMS. In

general, roles are created to serve as a client, database administrator, security administrator, audit

administrator, and operator. The following table gives an overview of the Trusted RUBIX roles

created by the default rubix-dev policy.

Trusted RUBIX Role Operations Permitted by Type

Enforcement

(MLS & DAC still enforced)

Reachable From Role

rubix_dbadm_r  Client connect (rxisql & ODBC)

 All SQL DML & DDL operations for default

and objset1 object sets

 CREATE CATALOG for default object set

 Import & export (rximport/rxexport)

 Create database (rxisql)

 Drop database (rxdb)

 Backup database (rxdump)

 Restore databases (rxrestore)

 Supersede the SQL DAC policy

 Operate dispatcher (rxsvrman)

 Terminate servers (rxsvrman)

 unconfined_r

 user_r

 staff_r

 sysadm_r

 secadm_r (MLS Policy)

 auditadm_r (MLS Policy)

rubix_secadm_r  Client connect (rxisql & ODBC)

 All SQL DML & DDL operations for default

object set

 SELECT for objset1 object set

 Import & export (rximport/rxexport)

 SPM policy management (rxpolman)

 Session context assignment

 Object context assignment

 unconfined_r

 user_r

 staff_r

 sysadm_r

 secadm_r (MLS Policy)

 auditadm_r (MLS Policy)

rubix_auditadm_r  Client connect (rxisql & ODBC)

 All SQL DML & DDL operations for default

object set

 SELECT for objset1 object set

 Import & export (rximport/rxexport)

 Configure auditing (rxauditset)

 Read audit trail (rxauditrpt)

 unconfined_r

 user_r

 staff_r

 sysadm_r

 secadm_r (MLS Policy)

 auditadm_r (MLS Policy)

rubix_op_r  Client connect (rxisql & ODBC)

 All SQL DML & DDL operations for default

object set

 SELECT for objset1 object set

 Import & export (rximport/rxexport)

 Backup database (rxdump)

 Operate dispatcher (rxsvrman)

 Terminate servers (rxsvrman)

 unconfined_r

 user_r

 staff_r

 sysadm_r

 secadm_r (MLS Policy)

 auditadm_r (MLS Policy)

rubix_client_r  Client connect (rxisql & ODBC)

 All SQL DML & DDL operations for default

object set

 Import & export (rximport/rxexport)

 unconfined_r

 user_r

 staff_r

 sysadm_r

 secadm_r (MLS Policy)

 auditadm_r (MLS Policy)

SELinux Guide

© 2012 Infosystems Technology, Inc. 6.0 REVISION 8

20

Trusted RUBIX Role Operations Permitted by Type

Enforcement

(MLS & DAC still enforced)

Reachable From Role

rubix_remote_client_r  Client connect (rxisql & ODBC)

 All SQL DML & DDL operations for default

object set

 SELECT for objset1 object set

 Import & export (rximport/rxexport)

 None. Used to label remote

client sessions.

objset1_rubix_client_r  Client connect (rxisql & ODBC)

 SELECT, INSERT, DELETE, UPDATE for

objset1 object set

 Import & export (rximport/rxexport)

 unconfined_r

 user_r

 staff_r

 sysadm_r

 secadm_r (MLS Policy)

 auditadm_r (MLS Policy)

objset1_rubix_adm_r  Client connect (rxisql & ODBC)

 All SQL DML & DDL operations for objset1

object set

 CREATE CATALOG for objset1 object set

 Import & export (rximport/rxexport)

 unconfined_r

 user_r

 staff_r

 sysadm_r

 secadm_r (MLS Policy)

 auditadm_r (MLS Policy)

Assigning Roles to Users

In order for a Linux login user (e.g., user1) to assume one of the Trusted RUBIX roles, the Linux

login user must be mapped to a single SELinux user (e.g., rxop_u) and the desired Trusted RUBIX

role(s) (e.g., rubix_op_r) must be assigned to the SELinux user. Each Linux login user must be

mapped to exactly one SELinux user. A single SELinux user may be associated with many Linux

login users. Any number of roles may be assigned to any number of SELinux users.

The general steps to configure Linux login users, SELinux users, and roles follows. SELinux users

may be created and configured with the semanage command or with the SELinux Management GUI

tool. The GUI tool may be started from the System->Administration ->SELinux Management menu.

The steps are:

1. Decide the general categories of users on the system and which Trusted RUBIX

functionalities and operating system functionalities they will perform. The most straight

forward categories correspond to the default Trusted RUBIX roles: RDBMS client, RDBMS

Administrator, RDBMS Security Administrator, RDBMS Operator, and RDBMS Audit

Administrator. Alternatively, you may decide that you want all RDBMS client and

administrative functionalities to reside in one category of user. This is particularly useful for a

development environment. For specific steps on creating a user with all Trusted RUBIX client

and administrative functionalities see the section titled Creating a Development User in the

Installation and Quick Start Guide. When determining user categories, keep in mind that

operating system functions may be combined with corresponding Trusted RUBIX functions.

For example, you may wish to have a single Security Administrator category that may

administer both the operating system and Trusted RUBIX. Or, you may wish to separate those

duties into two user categories.

2. For each category of user create a corresponding SELinux user or, if applicable, use a pre-

SELinux Guide

© 2012 Infosystems Technology, Inc. 6.0 REVISION 8

21

existing SELinux user created during the operating system installation. Using the SELinux

Management tool, SELinux users may be created by clicking on “SELinux Users” and

clicking “Add.” Additionally, the semanage command may be use to create and configure

SELinux users. Note that by SELinux convention SELinux user names end with the “_u”

suffix.

3. Assign the appropriate role(s) to each SELinux user according to the decisions made in step 1.

For example, if you have an SELinux user that will need RDBMS Security Administrator

functionality assign the rubix_secadm_r to that SELinux user. Using the SELinux

Management tool, Trusted RUBIX roles may be associated with SELinux users by clicking

on “SELinux Users”, selecting the desired SELinux users, and clicking “Properties.” The

Trusted RUBIX roles may then be added to the list of roles assigned to the SELinux user.

Note that you may also assign roles to an SELinux user while it is being created (i.e., step 2).

4. Decide which personnel will operate on the system and the category of user they will belong

to.

5. Create a Linux login user for each person that will operate on the system. This may be

accomplished using the useradd command or the GUI User Manager tool found under the

System->Administration->User and Groups menu.

6. Map each Linux login user to the SELinux user that corresponds to its user category. Using

the SELinux Management tool, SELinux users may be mapped to Linux login users by

selecting “User Mapping” and then clicking on “Add.” Additionally, the semanage command

may be use to map users. The mapping will cause the Linux login user to assume the SELinux

user (with its default role, type, and level) upon login. By default, the Targeted Policy maps

all new users to the unconfined_u SELinux user.

7. When a role is assumed by a user, either the SELinux type must be explicitly specified or a

default type must be specified in the default_type file in the

/etc/selinux/POLICY_TYPE/contexts directory, where POLICY_TYPE is either targeted or

mls, depending on which policy you are using. It is therefore recommended that a default type

mapping be added for each Trusted RUBIX role. Each Trusted RUBIX role ends with "_r".

The corresponding default type ends with "_t". For example, the default type for the

rubix_secadm_r role is rubix_secadm_t. The corresponding mapping may be set by editing

the default_type file and adding a line as follows: "rubix_secadm_r:rubix_secadm_t". This

should be repeated for all Trusted RUBIX roles as enumerated in the beginning of this

section. Note that the installation of Trusted RUBIX rubix-dev policy may have performed

this step for Trusted RUBIX default roles.

8. When a Linux user logs on, its user is mapped to a single SELinux user. At this time a default

role is chosen to assume at login. The default role is determined by the

/etc/selinux/POLICY_TYPE/contexts/default_contexts file or a file in

/etc/selinux/POLICY_TYPE/contexts/users directory. The former case applies to all SELinux

users and the latter case applies only to the SELinux user that corresponds to the file name

(e.g., the staff_u SELinux user will have a file named staff_u). In order to have a default

context of user_r:user_t:s0 (if the user_r is available to the SELinux user) or

staff_r:staff_t:s0 (if the staff_r is available to the SELinux user) the following lines should be

added to the file. The contexts listed first (e.g., system_r:local_login_t:s0) specify the login

method and the list of contexts after that (e.g., user_r:user_t:s0 staff_r:staff_t:s0) specify

default contexts in priority order. If none of the contexts in the context list is valid then a valid

context is created arbitrarily from the group of roles and types that are valid for the SELinux

user. Note that the installation of Trusted RUBIX rubix-dev policy may have performed this

step for Trusted RUBIX default roles.

SELinux Guide

© 2012 Infosystems Technology, Inc. 6.0 REVISION 8

22

system_r:local_login_t:s0 user_r:user_t:s0 staff_r:staff_t:s0

system_r:remote_login_t:s0 user_r:user_t:s0 staff_r:staff_t:s0

system_r:sshd_t:s0 user_r:user_t:s0 staff_r:staff_t:s0

system_r:xdm_t:s0 user_r:user_t:s0 staff_r:staff_t:s0

Note that these configurations may be modified at any time.

Trusted RUBIX SELinux Policy

Overview

In order for a Trusted RUBIX installation to properly function, two distinct security behaviors must

be defined through SELinux policy. The first security behavior is the proper functioning of the

programs and processes that make up the Trusted RUBIX RDBMS (e.g., the rxserver program and

process instantiations). This defines how the RDBMS interacts with the operating system and its

subjects and objects. This behavior is fixed within the rubix-base policy installed with the RDBMS.

The second security behavior that must be defined is the proper functioning of the Trusted RUBIX

RDBMS with respect to its RDBMS objects (e.g., tables and rows). This defines the particular

RDBMS operations (e.g., select, insert) that any particular SELinux role may perform on a particular

RDBMS object. This also defines the RDBMS administrative capabilities (e.g., back up a database,

start the dispatcher) of a particular role. There is a default policy, named rubix-dev, installed during

the Trusted RUBIX installation that defines this behavior. Therefore, the RDBMS is functional

immediately after installation. This policy may be configured by the security administrator to suite

the custom needs of the particular Trusted RUBIX installation. Policy script segments, called

interfaces (similar to a procedure call), are included with the Trusted RUBIX policy to ease creation

of custom RDBMS policies.

When Trusted RUBIX is installed two SELinux policy modules are also installed: the rubix-base

policy module and the rubix-dev policy module. The rubix-base policy contains the basic set of

SELinux policy rules that are required for the proper operation of the Trusted RUBIX RDBMS. It

also contains a set of SELinux interfaces (similar to a procedure call) that supports efficient creation

of custom SELinux security policies to control access to RDBMS objects. The rubix-base policy must

always be installed and may not be modified. A copy of the policy scripts that define the interfaces

provided may be found in the /var/lib/RUBIXdbms/etc/selinux/rubix-base.if file. The file is useful for

learning the exact behavior of the interfaces provided.

The Trusted RUBIX rubix-dev policy provides default security behavior for RDBMS objects and also

is intended to be used as a starting point to create custom, on-site SELinux RDBMS security policies.

The rubix-dev policy ensures that the Trusted RUBIX RDBMS is functional immediately after

installation. In general, it provides a set of roles and Type Enforcement rules to allow those roles to

perform RDBMS operations, both normal (e.g., SQL operations) and administrative (e.g., backup a

database). Before a custom policy may be written the selinux-policy-devel package must be installed.

The default rubix-dev policy is in the /var/lib/RUBIXdbms/etc/selinux directory. It consists of the

rubix-dev.te, rubix-dev.if, and rubix-dev.fc files. Instructions on building and installing a custom

policy module are given later in this document.

SELinux Guide

© 2012 Infosystems Technology, Inc. 6.0 REVISION 8

23

The rubix-base Policy Module

The rubix-base policy contains the basic set of SELinux policy rules that are required for the proper

operation of the Trusted RUBIX RDBMS. It also contains a set of SELinux interfaces (similar to a

procedure call) that supports efficient creation of custom SELinux security policies to control access

to RDBMS objects. The rubix-base policy must always be installed and may not be modified. A copy

of the policy scripts that define the interfaces provided may be found in the

/var/lib/RUBIXdbms/etc/selinux/rubix-base.if file. The file is useful for learning the exact behavior of

the interfaces provided.

RDBMS OBJECTS AND PERMISSIONS

The Trusted RUBIX RDBMS has database, catalog, schema, table, view, and row objects under

SELinux control.

The TR database object is mapped to the SELinux db_database object class. Its permissions are

access, create, and drop.

The TR catalog object is mapped to the SELinux dir object class. Its permissions are search, create,

rmdir, add_name, and remove_name.

The TR schema object is mapped to the SELinux dir object class. Its permissions are search, create,

rmdir, add_name, and remove_name.

The TR table object is mapped to the SELinux db_table object class. Its permissions are use, setattr,

create, drop, insert, select, update, delete.

The TR view object is mapped to the SELinux db_table object class. Its permissions are use, create,

and drop.

The TR row object is mapped to the SELinux db_tutple object class. Its permissions are insert, select,

update, and delete.

The following SQL operations are controlled using Type Enforcement. The permissions required for

each operation are given.

CREATE DATABASE: db_database {create}

CREATE CATALOG: db_database {access}; dir {create} on catalog

DROP CATALOG: db_database {access}; dir {rmdir} on catalog

CREATE SCHEMA: db_database {access}; dir {search add_name} on catalog; dir {create} on

schema

DROP SCHEMA: db_database {access}; dir {search remove_name} on catalog; dir {search rmdir}

on schema

CREATE TABLE: db_database {access}; dir {search} on catalog; dir {search add_name} on

schema; db_table {create} on table

SELinux Guide

© 2012 Infosystems Technology, Inc. 6.0 REVISION 8

24

DROP TABLE: db_database {access}; dir {search} on catalog; dir {search remove_name} on

schema; db_table {use drop} on table

CREATE VIEW: db_database {access}; dir {search} on catalog; dir {search add_name} on schema;

db_table {create} on view; db_table {use} on any referenced table

DROP VIEW: db_database {access}; dir {search} on catalog; dir {search remove_name} on schema;

db_table {drop} on view

CREATE INDEX: db_database {access}; dir {search} on catalog; dir {search add_name} on schema;

db_table {use setattr} on table;

DROP INDEX: db_database {access}; dir {search} on catalog; dir {search remove_name} on

schema; db_table {use setattr} on table

ALTER TABLE: db_database {access}; dir {search} on catalog; dir {search} on schema; db_table

{use setattr} on table

SELECT: db_database {access}; dir {search} on catalogs; dir {search} on schemata; db_table {use

select} on referenced tables; {use} on referenced views; db_tuple {select} on all rows directly

selected or referenced (denied rows are filtered from the result set).

INSERT: db_database {access}; dir {search} on catalogs; dir {search} on schemata; db_table {use

insert} on table/view inserted; db_table {use select} on tables/views referenced by select; db_tuple

{insert} on rows inserted; db_tuple {select} on rows selected or referenced by where clause (denied

rows are filtered from the result set).

UPDATE: db_database {access}; dir {search} on catalogs; dir {search} on schemas; db_table {use

update} on table/view updated; db_table {use select} on tables/views referenced by select; db_tuple

{update} on rows updated; db_tuple {select} on rows selected or referenced by where clause (denied

rows are filtered from the result set).

DELETE: db_database {access}; dir {search} on catalogs; dir {search} on schemas; db_table {use

delete} on table/view deleted from; db_table {use select} on tables/views referenced by select;

db_tuple {delete} on rows deleted; db_tuple {select} on rows selected or referenced by where clause

(denied rows are filtered from the result set).

RDBMS OBJECT SETS

The Trusted RUBIX policy uses a concept called object sets to aid in implementing coherent

SELinux policy over RDBMS objects. Object sets ease in creating certain types of custom RDBMS

policy. It is not required as custom policy may be created entirely from basic SELinux Type

Enforcement rules.

An object set is a named set of RDBMS objects (catalogs and subordinate schemata, tables, views,

and rows) that have a common security requirement. SELinux interfaces are provided that declare a

named object set and to allow particular roles SQL access to the object set. For instance, if the

rubix_client_r role is given SELECT access to the objset_set_1 object set, then it may select from any

table in the object set. It is important to note that once a RDBMS catalog has been assigned to an

object set, then all subordinate schemata, tables, views, and rows will automatically belong to that

object set.

SELinux Guide

© 2012 Infosystems Technology, Inc. 6.0 REVISION 8

25

Multiple object sets may reside in a single Trusted RUBIX database. The database object is not part

of any object set. Each object set has its own unique group of SELinux object types used to control

access. SELinux policy interfaces are provided to easily create object sets and to control SQL access

to the object set based upon the RDBMS subjects' domain type. Interfaces exist to simply and easily

permit DDL operations (e.g., object drop and create), select, insert, delete, list user objects, and list

system objects based upon the domain type of the RDBMS subject and the object set being accessed.

User defined object sets are named and all related SELinux constructs (e.g., roles, types) are named

with a prefix equal to the object set's name.

An administrative role is created for each object set. Subjects in this role must create and drop the

catalogs used by the object set.

As an example, in a cross domain environment each enclave could have a single object set to contain

its RDBMS objects. Each enclave would then have a unique, named set of object types that may be

used to control access. SELinux interfaces could then be used to give SQL access to a domain types

for each enclave as the security requirements dictate.

Each Trusted RUBIX database has a default object set that is automatically created. In addition, it

may have any number of user defined object sets explicitly created. The Security Administrator can

use the provided interfaces to control access to each object set. In addition, the Security Administrator

may write discrete Type Enforcement rules (e.g., allow rules) to further refine the security behavior.

Each object set is contained within one or more specially typed RDBMS catalogs which must be

created by the object set administrator. Each object set has its own group of SELinux object types for

each RDBMS object class. The SELinux types created for the default object set are rubix_db_t,

rubix_cat_t, rubix_schema_t, rubix_table_t, and rubix_row_t. User defined object sets have object

types created for each RDBMS object based upon the object set's name. For example, if an object set

were created with the name objset1 then object types would be created named objset1_rubix_cat_t,

objset1_rubix_schema_t, objset1_rubix_table_t, and objset1_rubix_row_t. Additionally, an

administrative role is created named objset1_rubix_adm_r. This role must create and drop the

catalogs used by the objset1 object set.

The sample policy source files are heavily commented to demonstrate how to use the object set

concept. If discrete, custom rules are written it is recommended to review the rubix-dev policy source

code to become familiar with using the rubix-base policy. The default rubix-dev policy is in the

/var/lib/RUBIXdbms/etc/selinux directory. It consists of the rubix-dev.te, rubix-dev.if, and rubix-

dev.fc files.

ROLE BASED INTERFACES

The following interfaces may be used to create a Trusted RUBIX administrative role and to configure

authorizations for that role. The Trusted RUBIX roles generally are able to perform administrative

functions (e.g., backup a database) and/or to supersede a security policy. Please see the Trusted

RUBIX Trusted Facilities Manual for more information on the specific authorizations of the Trusted

RUBIX administrative roles.

 rubix_create_role(role_prefix)
Create a user domain role (named role_prefix_r) and an associated type (named role_prefix_t).

The created role is given no special RDBMS permissions or authorizations. It is anticipated that

the role will be configured to perform RDBMS operations with one of the following interfaces.

SELinux Guide

© 2012 Infosystems Technology, Inc. 6.0 REVISION 8

26

 rubix_role_change_template(from_role_prefix,to_role_prefix)

Allow the role specified by from_role_prefix to transition to the role specified by to_role_prefix.

 rubix_add_secadm_2role(role_prefix)
Add Trusted RUBIX Security Administrator permissions and authorizations to the role specified

by the prefix. The role is also given permissions and authorizations to be a Trusted RUBIX client.

No permissions are given to perform operations on RDBMS objects.

 rubix_add_dbadm_2role(role_prefix)
Add Trusted RUBIX Database Administrator permissions and authorizations to the role specified

by the prefix. The role is also given permissions and authorizations to be a Trusted RUBIX client.

No permissions are given to perform operations on RDBMS objects.

 rubix_add_auditadm_2role(role_prefix)
Add Trusted RUBIX Audit Administrator permissions and authorizations to the role specified by

the prefix. The role is also given permissions and authorizations to be a Trusted RUBIX client. No

permissions are given to perform operations on RDBMS objects.

 rubix_add_op_2role(role_prefix)
Add Trusted RUBIX Operator permissions and authorizations to the role specified by the prefix.

The role is also given permissions and authorizations to be a Trusted RUBIX client. No

permissions are given to perform operations on RDBMS objects.

 rubix_add_client_2role(role_prefix)
Add Trusted RUBIX Client permissions and authorizations to the role specified by the prefix. No

permissions are given to perform operations on RDBMS objects.

RDBMS OBJECT PERMISSION INTERFACES

RDBMS object permission interfaces provide a modular way to permit RDBMS SQL operations to be

performed by a given domain type on a given object set. The default object set and user defined

object sets have distinct sets of interfaces functions.

Default Object Set Interfaces
 rubix_add_admin_db_2domain(domain)

Add permissions to the given domain to perform CREATE and DROP for all database objects and

the ability to perform CREATE and DROP for catalog objects in the default object set.

 rubix_add_fullsql_dft_2domain(domain)
Add permissions to the given domain to perform SELECT, INSERT, UPDATE, DELETE, LIST

(info_schem SELECT), CREATE, DROP, and ALTER for table, schema, view, index, and row objects

in the default object set.

 rubix_add_ddl_dft_2domain(domain)
Add permissions to the given domain to perform CREATE, DROP, and ALTER for table, schema,

view, and index objects in the default object set.

 rubix_add_insert_dft_2domain(domain)
Add permissions to the given domain to perform INSERT for table, view, and row objects in the

default object set.

 rubix_add_update_dft_2domain(domain)
Add permissions to the given domain to perform UPDATE and SELECT for table, view, and row

objects in the default object set.

 rubix_add_delete_dft_2domain(domain)
Add permissions to the given domain to perform DELETE and SELECT for table, view, and row

objects in the default object set.

 rubix_add_select_dft_2domain(domain)

SELinux Guide

© 2012 Infosystems Technology, Inc. 6.0 REVISION 8

27

Add permissions to the given domain to perform SELECT for table, view, and row objects in the

default object set.

 rubix_add_list_dft_2domain(domain)
Add permissions to the given domain to perform LIST (SELECT on tables in the

system_catalog.info_schem schema) for all user objects in the default object set.

 rubix_add_list_sys_2domain(domain)

Add permissions to the given domain to perform LIST (SELECT on tables in the

system_catalog.info_schem schema) for all system objects.

User Defined Object Set Interfaces
 rubix_create_objset(objset)

Create an object set with the given prefix. An administrative role (OBJSET_rubix_admin_r) and

all RDBMS object types (e.g., OBJSET_rubix_table_t) are created. The administrative role may

CREATE and DROP catalog objects for the new object set. The administrator must create at least one

catalog prior to any other SQL operations being performed on the object set.

 rubix_add_fullsql_objset_2domain(objset,domain)

Add permissions to the given domain to perform SELECT, INSERT, UPDATE, DELETE, LIST

(info_schem SELECT), CREATE, DROP, and ALTER for table, schema, view, index, and row objects in

the given object set.

 rubix_add_ddl_objset_2domain(objset,domain)
Add permissions to the given domain to perform CREATE, DROP, and ALTER for table, schema,

view, and index objects in the given object set.

 rubix_add_insert_objset_2domain(objset,domain)

Add permissions to the given domain to perform INSERT for table, view, and row objects in the

given object set.

 rubix_add_update_objset_2domain(objset,domain)

Add permissions to the given domain to perform UPDATE and SELECT for table, view, and row

objects in the given object set.

 rubix_add_delete_objset_2domain(objset,domain)

Add permissions to the given domain to perform DELETE and SELECT for table, view, and row

objects in the given object set.

 rubix_add_select_objset_2domain(objset,domain)
Add permissions to the given domain to perform SELECT for table, view, and row objects in the

given object set.

 rubix_add_list_objset_2domain(objset,domain)
Add permissions to the given domain to perform LIST (SELECT on tables in the

system_catalog.info_schem schema) for all user objects in the given object set.

Utility Interfaces
 rubix_tcp_socket(type)

Declare a TCP socket type that will be used to remotely connect to Trusted RUBIX servers.

DOMAIN ATTRIBUTES AND TYPES

The following attributes and types are assigned to Trusted RUBIX declared domains. Unless discrete,

custom Type Enforcement rules are added to the rubix-dev policy (i.e., rules are added other than

using the provided interfaces), these attributes and types may be ignored.

SELinux Guide

© 2012 Infosystems Technology, Inc. 6.0 REVISION 8

28

Domain Attributes
 rubix_domain_type

Attribute given to all domain types created through Trusted RUBIX interfaces.

 rubix_role_domain_type
Attribute given to all domain types associated with roles created through Trusted RUBIX

interfaces.

 rubix_adm_type
Attribute given to all domain types associated with any administrative role created through

Trusted RUBIX interfaces.

 rubix_dbadm_type
Attribute given to all domain types associated with any Database Administrator role created

through Trusted RUBIX interfaces.

 rubix_secadm_type
Attribute given to all domain types associated with any Security Administrator role created

through Trusted RUBIX interfaces.

 rubix_op_type
Attribute given to all domain types associated with any Operator role created through Trusted

RUBIX interfaces.

 rubix_auditadm_type
Attribute given to all domain types associated with any Audit Administrator role created through

Trusted RUBIX interfaces.

 rubix_client_type
Attribute given to all domain types associated with any Client role created through Trusted

RUBIX interfaces.

 rubix_auths_domain_type
Attribute given to all domain types used to grant Trusted RUBIX authorizations.

Domain Types
 rubix_t

The domain type used to isolate Trusted RUBIX server and command processes. It is the creating

domain type for all RDBMS system objects.

 rubix_secadm_auths_t
The domain type used to give Trusted RUBIX Security Administrator authorizations. To have the

authorizations the rubix_secadm_auths_t domain type must belong to the current role and process

domain transition must be allowed from the current domain type to the rubix_secadm_auths_t

domain type.

 rubix_dbadm_auths_t
The domain type used to give Trusted RUBIX Database Administrator authorizations. To have the

authorizations the rubix_dbadm_auths_t domain type must belong to the current role and process

domain transition must be allowed from the current domain type to the rubix_dbadm_auths_t

domain type.

 rubix_auditadm_auths_t
The domain type used to give Trusted RUBIX Audit Administrator authorizations. To have the

authorizations the rubix_auditadm_auths_t domain type must belong to the current role and

process domain transition must be allowed from the current domain type to the

rubix_auditadm_auths_t domain type.

 rubix_op_auths_t
The domain type used to give Trusted RUBIX Operator authorizations. To have the authorizations

the rubix_op_auths_t domain type must belong to the current role and process domain transition

SELinux Guide

© 2012 Infosystems Technology, Inc. 6.0 REVISION 8

29

must be allowed from the current domain type to the rubix_op_auths_t domain type.

 rubix_client_auths_t

The domain type used to give Trusted RUBIX Client authorizations. To have the authorizations

the rubix_client_auths_t domain type must belong to the current role and process domain

transition must be allowed from the current domain type to the rubix_client_auths_t domain type.

RDBMS OBJECT ATTRIBUTES AND TYPES

The following attributes and types are assigned to Trusted RUBIX declared objects. Unless discrete,

custom Type Enforcement rules are added to the rubix-dev policy (i.e., rules are added other than

using the provided interfaces), these attributes and types may be ignored.

RDBMS Object Attributes
 rubix_dbms_type

Attribute given to all Trusted RUBIX RDBMS object types.

 rubix_database_type
Attribute given to all Trusted RUBIX RDBMS database object types.

 rubix_catalog_type
Attribute given to all Trusted RUBIX RDBMS catalog object types.

 rubix_schema_type
Attribute given to all Trusted RUBIX RDBMS schema object types.

 rubix_table_type
Attribute given to all Trusted RUBIX RDBMS table object types.

 rubix_row_type
Attribute given to all Trusted RUBIX RDBMS row object types.

 rubix_user_database_type
Attribute given to all Trusted RUBIX RDBMS user database object types.

 rubix_user_catalog_type
Attribute given to all Trusted RUBIX RDBMS user catalog object types.

 rubix_user_schema_type
Attribute given to all Trusted RUBIX RDBMS user schema object types.

 rubix_user_table_type
Attribute given to all Trusted RUBIX RDBMS user table object types.

 rubix_user_row_type
Attribute given to all Trusted RUBIX RDBMS user row object types.

 rubix_sys_database_type
Attribute given to all Trusted RUBIX RDBMS system database object types.

 rubix_sys_catalog_type
Attribute given to all Trusted RUBIX RDBMS system catalog object types.

 rubix_sys_schema_type
Attribute given to all Trusted RUBIX RDBMS system schema object types.

 rubix_sys_table_type
Attribute given to all Trusted RUBIX RDBMS system table object types.

 rubix_sys_row_type
Attribute given to all Trusted RUBIX RDBMS system row object types.

RDBMS Object Types For the Default Object Set
 rubix_db_t

Object type given to all Trusted RUBIX database objects.

SELinux Guide

© 2012 Infosystems Technology, Inc. 6.0 REVISION 8

30

 rubix_cat_t
Object type given to all Trusted RUBIX catalog objects in the default object set.

 rubix_schema_t
Object type given to all Trusted RUBIX schema objects in the default object set.

 rubix_table_t
Object type given to all Trusted RUBIX table objects in the default object set.

 rubix_row_t
Object type given to all Trusted RUBIX row objects in the default object set.

 rubix_sys_db_t
Object type given to all Trusted RUBIX system database objects.

 rubix_sys_cat_t
Object type given to all Trusted RUBIX system catalog objects.

 rubix_sys_schema_t
Object type given to all Trusted RUBIX system schema objects.

 rubix_sys_table_t
Object type given to all Trusted RUBIX system table objects.

 rubix_sys_row_t
Object type given to all Trusted RUBIX system row objects.

RDBMS Object Type Interfaces
The following interfaces may be used to mark (assign corresponding attributes) to database object

types. Unless custom object types are added to the rubix-dev policy (i.e., types are added other than

using the provided interfaces), these interfaces may be ignored.

 rubix_user_database_object(type)
Mark the given type as a Trusted RUBIX database object.

 rubix_user_catalog_object(type)
Mark the given type as a Trusted RUBIX user catalog object.

 rubix_user_schema_object(type)
Mark the given type as a Trusted RUBIX user schema object.

 rubix_user_table_object(type)
Mark the given type as a Trusted RUBIX user table object.

 rubix_user_row_object(type)
Mark the given type as a Trusted RUBIX user row object.

 rubix_sys_database_object(type)
Mark the given type as a Trusted RUBIX system database object.

 rubix_sys_catalog_object(type)

Mark the given type as a Trusted RUBIX system catalog object.

 rubix_sys_schema_object(type)

Mark the given type as a Trusted RUBIX system schema object.

 rubix_sys_table_object(type)

Mark the given type as a Trusted RUBIX system table object.

 rubix_sys_row_object(type)

Mark the given type as a Trusted RUBIX system row object.

RDBMS OBJECT TE RULES IN RUBIX-BASE POLICY

The following RDBMS object Type Enforcement rules are included in the rubix-base policy and may not be

altered. All other RDBMS object TE rules are defined in the rubix-dev policy and may be modified by the

SELinux Guide

© 2012 Infosystems Technology, Inc. 6.0 REVISION 8

31

end user. These rules define how databases and system objects are labeled when they are created. All

system objects are created by the rubix_t type and all objects created by the rubix_t type must be system

objects. The first rule defines the type transition rule for database creation. Trusted RUBIX database

objects must always have the rubix_db_t type.

type_transition rubix_client_type rubix_t : db_database rubix_db_t;

type_transition rubix_t rubix_db_t : dir rubix_sys_cat_t;

type_transition rubix_t rubix_sys_db_t : dir rubix_sys_cat_t;

type_transition rubix_t rubix_cat_t : dir rubix_sys_schema_t;

type_transition rubix_t rubix_sys_cat_t : dir rubix_sys_schema_t;

type_transition rubix_t rubix_schema_t : db_table rubix_sys_table_t;

type_transition rubix_t rubix_sys_schema_t : db_table

rubix_sys_table_t;

type_transition rubix_t rubix_table_t : db_tuple rubix_sys_row_t;

type_transition rubix_t rubix_sys_table_t : db_tuple

rubix_sys_row_t;

The rubix-dev Policy Module

The Trusted RUBIX rubix-dev policy provides default security behavior for RDBMS objects and also

is intended to be used as a starting point to create custom, on-site SELinux RDBMS security policies.

The rubix-dev policy ensures that the Trusted RUBIX RDBMS is functional immediately after

installation. In general, it provides a set of roles and Type Enforcement rules to allow those roles to

perform RDBMS operations, both normal (e.g., SQL operations) and administrative (e.g., backup a

database). Before a custom policy may be written the selinux-policy-devel package must be installed.

The default rubix-dev policy is in the /var/lib/RUBIXdbms/etc/selinux directory. It consists of the

rubix-dev.te, rubix-dev.if, and rubix-dev.fc files. Examining and modifying the included rubix-dev

policy files is encouraged. Instructions on building and installing a custom policy module are given

later in this document.

DEFAULT rubix-dev POLICY

A default rubix-dev policy is installed when the Trusted RUBIX RDBMS is installed. It is intended to

make the RDBMS functional immediately after installation. That is, there is no requirement that

custom policy be created. The default rubix-dev policy creates a default set of SELinux roles suitable

for RDBMS operation and creates two object sets.

Default Roles of the rubix-dev Policy
Trusted RUBIX uses the SELinux Role Based Access Control (RBAC) mechanism to allow users to

perform database actions, both administrative and normal. The installation of Trusted RUBIX

installed a default set of roles. The default administrative roles and their general descriptions are

listed below:

SELinux Guide

© 2012 Infosystems Technology, Inc. 6.0 REVISION 8

32

 rubix_dbadm_r: Create, drop, backup, and restore databases; supersede the SQL DAC

policy; control the dispatcher and server processes

 rubix_secadm_r: Supersede the MAC policy; configure the attribute based access control

SPM mechanism

 rubix_auditadm_r: Configure and view the audit trail

 rubix_op_r: Control the dispatcher and server processes; backup databases

The default client roles are:

 rubix_client_r: Access all RDBMS objects in the default object set from a local client

 rubix_remote_client_r: Access all RDBMS objects in the default object set from a

remote client; SELECT only access to objects in the objset1 object set

 objset1_rubix_client_r: Access all RDBMS objects in the objset1 object set from a

local client

 objset1_rubix_adm_r: Access all RDBMS objects and create/drop catalogs in the objset1

object set from a local client

Note that administrative roles may also perform client operations and custom roles may be configured

by the OS Security Administrator. For more information about the authorizations given to Trusted

RUBIX administrative roles please refer to the Trusted Facility Manual.

Default Object Sets of the rubix-dev Policy
The rubix-dev policy creates two object sets. The first is called the default object set and the second is

named objset1.

The default object set is automatically created, therefore no use of the rubix_create_objset interface is

required. The default object set exists under the default_catalog catalog. Therefore, all objects

contained in the default_catalog catalog belong to the default object set. The rubix_dbadm_r role

may create additional catalogs which will automatically belong to the default object set. The

following SELinux scripts define the SQL behavior for objects in the default object set.

 rubix_add_fullsql_dft_2domain(rubix_client_t): Allow the rubix_client_r role full SQL

abilities on objects in the default object set.

 rubix_add_fullsql_dft_2domain(rubix_secadm_t): Allow the rubix_secadm_r role full

SQL abilities on objects in the default object set.

 rubix_add_fullsql_dft_2domain(rubix_auditadm_t): Allow the rubix_auditadm_r role full

SQL abilities on objects in the default object set.

 rubix_add_fullsql_dft_2domain(rubix_op_t): Allow the rubix_op_r role full SQL abilities

on objects in the default object set.

 rubix_add_fullsql_dft_2domain(rubix_remote_client_t): Allow the rubix_remote_client_r

role full SQL abilities on objects in the default object set.

The ability to list system objects (e.g., the Columns table) in the Information Schema tables are not

part of any object set so special interfaces are provided. The following SELinux scripts define the

SQL behavior for system objects in the Information Schema.

 rubix_add_list_sys_2domain(rubix_client_t): Allow the rubix_client_r role to select system

rows in the Information Schema.

SELinux Guide

© 2012 Infosystems Technology, Inc. 6.0 REVISION 8

33

 rubix_add_list_sys_2domain(rubix_secadm_t): Allow the rubix_ secadm _r role to select

system rows in the Information Schema.

 rubix_add_list_sys_2domain(rubix_auditadm_t): Allow the rubix_auditadm_r role to

select system rows in the Information Schema.

 rubix_add_list_sys_2domain(rubix_op_t): Allow the rubix_op_r role to select system rows

in the Information Schema.

 rubix_add_list_sys_2domain(rubix_remote_client_t): Allow the rubix_remote_client_r

role to select system rows in the Information Schema.

 rubix_add_list_sys_2domain(objset1_rubix_client_t): Allow the objset1_rubix_client_r

role to select system rows in the Information Schema.

 rubix_add_list_sys_2domain(objset1_rubix_adm_t): Allow the objset1_rubix_adm_r role

to select system rows in the Information Schema.

The objset1 object set is the only named object set created by default. More object sets may be

created by using the rubix_create_objset interface. In order to use this object set the

objset1_rubix_adm_r role must first create a catalog in the database. Then, all objects created

within this catalog will belong to the objset1 object set and be controlled by its SELinux rules. Note

that this role may create any number of catalogs and each will belong to the objset1 object set. The

following SELinux scripts define the SQL behavior for objects in the default object set.

rubix_add_fullsql_objset_2domain(objset1, rubix_dbadm_t): Allow the rubix_dbadm_r role full SQL

abilities on objects in the objset1 object set.

rubix_add_fullsql_objset_2domain(objset1, objset1_rubix_adm_t): Allow the objset1_rubix_adm_r

role full SQL abilities on objects in the objset1 object set.

rubix_add_select_objset_2domain(objset1, rubix_op_t): Allow the rubix_op_r role SQL SELECT

abilities on objects in the objset1 object set.

rubix_add_list_objset_2domain(objset1, rubix_op_t): Allow the rubix_op_r role Information Schema

list abilities on objects in the objset1 object set.

rubix_add_select_objset_2domain(objset1, rubix_auditadm_t): Allow the rubix_auditadm_r role SQL

SELECT abilities on objects in the objset1 object set.

rubix_add_list_objset_2domain(objset1, rubix_auditadm_t): Allow the rubix_auditadm_r role

Information Schema list abilities on objects in the objset1 object set.

rubix_add_select_objset_2domain(objset1, rubix_secadm_t): Allow the rubix_secadm_r role SQL

SELECT abilities on objects in the objset1 object set.

rubix_add_list_objset_2domain(objset1, rubix_secadm_t): Allow the rubix_secadm_r role

Information Schema list abilities on objects in the objset1 object set.

rubix_add_insert_objset_2domain(objset1, objset1_rubix_client_t): Allow the objset1_rubix_client_r

role SQL INSERT abilities on objects in the objset1 object set.

rubix_add_update_objset_2domain(objset1, objset1_rubix_client_t): Allow the

objset1_rubix_client_r role SQL SELECT abilities on objects in the objset1 object set.

rubix_add_delete_objset_2domain(objset1, objset1_rubix_client_t): Allow the objset1_rubix_client_r

SELinux Guide

© 2012 Infosystems Technology, Inc. 6.0 REVISION 8

34

role SQL DELETE abilities on objects in the objset1 object set.

rubix_add_select_objset_2domain(objset1, rubix_remote_client_t): Allow the rubix_remote_client_r

role SQL SELECT abilities on objects in the objset1 object set.

Remote Connection Rules of the rubix_dev Policy
The ability for a role to connect to a database from a remote client must be explicitly given. The

following rule gives the behavior of the policy by default.

rubix_tcp_socket(rubix_remote_client_t): Allow the rubix_remote_client_r role the ability to

connect to a database through a TCP socket.

BUILDING AND INSTALLING CUSTOM POLICY

The OS Security Administrator may create custom policy for the Trusted RUBIX RDBMS objects. It

is highly recommended that the included policy script files, in /var/lib/RUBIXdbms/etc/selinux, be

examined and modified to become comfortable with creating policy.

To build a custom policy the selinux-policy-devel package must first be installed. To prepare a build

directory copy the contents of the /usr/share/selinux/devel directory to the directory you wish to use.

Then, copy the rubix-dev.te, rubix-dev.if, and rubix-dev.fc files from the

/var/lib/RUBIXdbms/etc/selinux directory into your directory. Lastly, remove the example.te,

example.if, and example.fc files from your working directory.

The *.te files generally contain TE rules and interface calls. The *.if files contain your own interfaces,

and the *.fc files contain static OS file labeling rules. To see the source for the rubix-base policy’s

interface functions mentioned in this document, examine the /usr/share/selinux/develinclude/rubix-

base directory.

Trusted RUBIX policy may be constructed in five steps:

 create administrative and client roles

 assign system permissions and RDBMS authorizations to those roles

 create RDBMS object sets

 assign RDBMS object permissions to the roles

 declare any remote socket types

SELinux policy interfaces are provided to make these steps simple. See the default rubix-dev.te file

for a demonstration of how to perform these steps.

Once you have modified your policy files (generally only rubix-dev.te need be modified) you can

build your policy by using the command "make" in your working directory. The compiled policy

module may then be installed using the following command:

semodule –i rubix-dev.pp

Note that you should be the root user in the sysadm_r role or have the policy in permissive mode.

