
Enhanced Availability and Security by Rate Control Using Extended Policy
Framework in SELinux

Pravin Shinde, Priyanka Sharma, Srinivas Guntupalli
CDAC, Mumbai

{pravin,priyanka,srinivas}@cdacmumbai.in

Abstract

In this paper we discussed an extension to Security En-
hanced Linux (SELinux) to build a more available and se-
cure system that has the capability to contain and mitigate
Denial of Service (DoS) attacks by exercising rate control
over resource usage. We presented an extended structure to
compliment Mandatory Access Control policies of SELinux.
Using this extension a system’s resource usage by various
entities can be kept under control, leading to a more avail-
able system.

1 Introduction

Attacks on computing systems can be broadly classified
into two categories. First, attacks that exploit the existing
vulnerabilities in the systems and make the systems do what
they are not expected to do. The second category being, at-
tacks that abuse the privileges granted and hog the system
and prevent genuine users from accessing the services, the
system is supposed to provide. Flood based DoS attacks fall
into the second category. Methods available in the literature
for protecting systems against the attacks that belong to the
first category suggest proper access control mechanisms and
creating systems with out any vulnerabilities. And protect-
ing systems against the second category of attacks requires
control on usage of system resources.

DoS attacks are malicious attempts to make a system
or network unusable and can be realized in several ways.
Flooding a network service with requests, consuming too
many resources in a system are a few of them. A network-
based attack intentionally saturates the system resources
with increased network traffic. An assault coordinated
across many hijacked systems by a single attacker is called
as Distributed DoS (DDoS). The malicious workload in
network-based DoS attacks comprises network data-grams
or packets that consume network buffers, CPU processing
cycles, and link bandwidth. When any of these resources
form a bottleneck, system performance degrades or stops,

impeding legitimate system use. Overloading a Web server
with spurious requests, for example, slows its response to
legitimate users.

[8] classifies DoS attacks into Protocol Attacks and
Brute Force attacks based on the vulnerability they are try-
ing to exploit . Protocol Attacks try to exploit a particular
vulnerability present with the protocol. Brute-force attacks
are performed by initiating a vast amount of seemingly le-
gitimate transactions. Fixing the protocol vulnerabilities
pushes the Protocol Attacks into Brute Force category. To
build protection against Brute Force attacks need an early
detection of such attacks. The method we presented in this
paper builds a robust system which works against both kinds
of attacks by containing them and creating a more available
systems.

The organization of the paper is as follows. In section 2
i.e., related work, we did literature survey and presented the
existing methods to detect and mitigate DoS attacks. In Sec-
tion 3 we presented Security Enhanced Linux (SELinux) in
which we had built an extension to mitigate DoS attacks fol-
lowed by the approach we had used, and experiments and
results in Sections 4 and 5.

2 Related Work

The problem of detecting and protecting against DoS has
been investigated for quite some time. [10] discusses the
existing strategies that generally fall into two categories .

• Solutions that suggest use of adding additional re-
sources to mitigate the attack

• Solutions that attempt to differentiate between legiti-
mate and malicious (or anomalous) use

While the former approach is often used in practice to
mitigate the effects of an ongoing attack, most of the aca-
demic literature has focused on the latter category.

Solutions that suggest use of additional resources typi-
cally involve outsourcing some of the jobs to keep the sys-
tem free from the extra load. [16] proposes use of secure

Third International Symposium on Information Assurance and Security

0-7695-2876-7/07 $25.00 © 2007 IEEE
DOI 10.1109/IAS.2007.17

343

gl22
Surligner

entities called bastions to do the outsourced job. Some of
the solutions in this category also advocate extra control to
hosts over other network entities. [6] proposes a bi-fold so-
lution based on the Internet Indirection Infrastructure, and
an IP-based solution in which hosts insert filters at the last
hop IP router.

Solutions that try to differentiate between legitimate and
malicious use can be largely classified into categories,

• Solutions that build models by learning the normal
behavior of the usage and validate the regular usage
against such model

• Solutions that find anomalies by monitoring continu-
ous changes in the usage without any assumption of
normalcy. Here, sudden and significant change in the
use is considered as an attack

Both of the above approaches suffer from potential to
generate false alarms during flash events, which are due to
unexpected legitimate use. Many similar approaches that
aim at differentiating genuine requests from malicious, suf-
fer from potential false alarms.

Most of the available solutions in the literature suggest
topological modification or modifications at intermediate
devices to mitigate DoS. [12] suggests a technique to detect
DoS attacks by monitoring a wide IP address space for in-
coming unsolicited back-scatter packets. Such packets are a
non-collocated victims response to several spoofed vulnera-
bility and flooding attacks. The back-scatter packets source
address is that of the victim, but the packets destination ad-
dress is randomly spoofed. An attack that uses uniformly
distributed address spoofing leads to a finite probability that
any monitored address space will receive back-scatter pack-
ets. Such attacks can be detected using this analysis. [9] dis-
cusses statistical approaches to monitor activity variation to
detect DoS attacks.

Most of the solutions concentrated on novel techniques
to detect DoS attacks than trying to mitigate them. Some
of the solutions to mitigate such attacks are very specific
a certain kind of DoS attacks. SYN cookies were intro-
duced by D.J.Bernstein to solve DoS attacks exploiting the
vulnerability in Transmission Control Protocol [5]. Ingress
filtering had been introduced to tackle DoS attacks done us-
ing spoofed IP addresses and later on it became an IETF
standard [3].

The solutions presented in the above paragraph are spe-
cific to a particular vulnerability in the system or network or
a protocol. But there is not generic solution that can work
against the entire class of DoS attacks that are realized by
brute force. We present a solution in this paper that provides
support in operating system itself to mitigate such attacks
and keeps the system more available and secure.

3 SELinux

Security-Enhanced Linux (SELinux) is an implementa-
tion of mandatory access control using Linux Security Mod-
ules (LSM) in the Linux kernel, based on the principle of
least privilege [2], [4].

3.1 Reference Monitor

SELinux is based on the fundamental model for charac-
terizing access control in operating systems called, refer-
ence monitor proposed in Anderson report [7], [11]. In a
reference monitor, as shown in Figure 1 the operating sys-
tem classifies resource into active and passive entities. Ac-
tive resources such as processes are called subjects and pas-
sive resources such as files are called objects. The reference
monitor mechanism controls access among these subjects
and objects according to the specified security policy [15].
Access control decisions are based on security attributes as-
sociated with each subject and object. For example, in stan-
dard Linux, subjects have real and effective user identifiers,
and objects have access permission modes that are used to
determine whether a process may open a file.

Subjects ObjectsAccess
Attempt Yes / No

Rules

Figure 1. The Reference Monitor

Every operating system implements some form of refer-
ence monitor and applies access control on subjects and ob-
jects. In standard Linux, subjects are generally processes,
and objects are the various system resource used for infor-
mation sharing, storage, and communication. In general,
the security policy rules enforced by the reference moni-
tor are fixed and hard-coded, whereas the security attributes
that these rules use for validation can be changed and as-
signed.

3.2 Discretionary Access Control

Discretionary Access Control(DAC) is a form of ac-
cess control that usually allows authorized users to change

344

the access control attributes of objects, thereby specifying
whether other users have access to the object [13]. Nearly
all modern operating systems have some form of user-
identity-based DAC. In Linux, the owner-group-world per-
mission mode mechanism is prevalent and well known.

In such environment processes inherit the privileges of
the users who created them and if a program is corrupt
or malicious, it can misuse the privileges assigned to it.
DAC assumes a benign environment, where all programs
are trustworthy and without any flaws, and works well only
in such environment.

3.3 Mandatory Access Control

To address the problem of malicious and flawed soft-
ware, Mandatory Access Control (MAC) has been intro-
duced as a means of restricting access to objects based on
the sensitivity (as represented by a label) of the information
contained in the objects and the formal authorization (i.e.,
clearance) of subjects to access information of such sensi-
tivity [1].

SELinux enabled kernel enforces MAC policies that con-
fine user programs and system servers to the minimum
amount of privilege they require to do their jobs. This re-
duces or eliminates the ability of these programs and dae-
mons to cause harm when compromised (via buffer over-
flows or misconfiguration). This confinement mechanism
operates independently of the traditional Linux access con-
trol mechanisms.

3.4 Security Attributes

Typically such policy enforcement(MAC) is done in
accordance with the policies specified by the administrator
of the system In SELinux access control is based on some
type of access control attribute associated with objects and
subjects. This access control attribute is called a security
context. All objects (files, inter-process communication
channels, sockets, network hosts, and so on) and subjects
(processes) have a single security context associated with
them. A security context has three elements: user, role,
and type identifiers. The usual format for specifying or
displaying a security context is as follows:

user:role:type

The type identifier is the primary part of the security con-
text that determines access. The user and role identifiers in
a security context have little impact in the access control
policy for type enforcement except for constraint enforce-
ment which were discussed later in the paper.

3.5 SELinux Architecture

Figure 2 describes the architecture of SELinux which
comprises of Security Server(SS) and Access Vector
Cache(AVC) as main components and LSM hooks as the
interface [14]. SS provides general interfaces for obtaining
security policy decisions, enabling the rest of the module
to remain independent of the specific security policies used.
AVC provides caching of access decision computations ob-
tained from the SS to minimize the performance overhead
of the SELinux security mechanisms. It provides interfaces
to the hook functions for efficiently checking permissions
and it provides interfaces to the SS for managing the cache.

SELinux File System

Access
 Vector
 Cache

Security
 Server

User Space

Kernel Space

Policy Management
 Interface

 LSM
Hooks

 kernel
 Object
Managers

Cache Miss

Figure 2. SELinux Architecture

3.6 Features of SELinux

• Type Enforcement (TE): The majority of SELinux
policies are a set of statements and rules that collec-
tively define the type enforcement policy. SELinux
monitors access attempts by processes to every re-
source and an access succeeds only if there is at least
one TE rule allowing that access.

• Role Based Access Control (RBAC): Roles act as a
supporting feature to TE. RBAC in SELinux further
constrains TE by defining the relationship between do-
main types and users to control Linux users privileges
and access permissions.

• Multi-Level Security (MLS): To process information
with different sensitivities differently MLS is also sup-
ported by SELinux.

4 Our Approach

SELinux policy framework mandates administrators to
specify the behavior of a process in terms of, what kind of

345

access is required for a process to run. As SELinux en-
forces MAC, every running process requires a policy asso-
ciated with it. These policies are typically static. Once they
are specified, they are read during boot, and loaded into the
system. When a process requests for any kernel object, that
request is trapped by SELinux and verified against the rule
base corresponding to the process and the object and access
is granted or denied according to the policy.

We extended SELinux policy framework to address the
problems discussed in the earlier section, that are related to
DoS attacks realized through over-usage of resources. Us-
ing this extension one can specify not only whether access
is allowed or not between two security contexts, but also the
rate at which such access is allowed.

4.1 Why SELinux is Chosen ?

SELinux has already been accepted in the main-line
Linux kernel due to several features like [4]

• Clean separation of decision making from enforcement

• Well-defined policy interfaces, flexible policy lan-
guage

• Efficient caching of access decisions

• Control over process initialization and inheritance and
program execution

• Control over all kernel objects

SELinux intercepts access to kernel objects in the sys-
tem using LSM hooks. By referring to a policy database,
it takes a decision, which will be enforced by kernel ob-
ject managers. As already fine grained control over all the
events in the kernel is with the SELinux, we found, adding
few more parameters and extending the policy framework
leads to a more available and secure systems.

4.2 Proposed Extension

Using SELinux policy language, one can specify the
kind of access that is granted to a subject on an object. LSM
hooks and SELinux enable the kernel to enforce such pol-
icy specification. But, there is no facility in SELinux policy
language to specify the rate of access allowed between a
subject and an object. The rate of a resource usage becomes
important in mitigating some of the DoS attacks discussed
in the earlier sections.

We propose to add one more parameter to the rule
structure used by SELinux policy language, that specifies
the rate of access allowed. This parameter is used to control
the rate of a resource usage. Rate control is enforced
along with TE. TE is achieved in SELinux using Access

Vector(AV) rules. AV rules are the rules that specify
accesses among different types of kernel objects. The
syntax of an AV rule is as follows,

rule name type set type set : class set perm set.

Between the type sets that belong to some class, a per-
mission can either be allowed or denied. we added rate
control parameter, to the AV rules, that specifies the rate at
which access should be allowed between kernel objects of
gives types. The extended SELinux controls the rate of ac-
cess between a subject and an object. If the rate crosses the
allowed rate in the AV rules, access would be temporarily
denied.

Subject Action Object

Is access allowed as per AV Rules
No

Yes

Compute Rate of use

 Is the rate allowed as per AV rules
No

Yes

Deny Access

Deny Access

Allow Access

Figure 3. Flow of Control in the New Model

Figure 3 shows a flowchart of the control flow in sys-
tem with the extension. When a subject tries to perform
an action on a given object, LSM hooks divert the flow to
SELinux, which refers to policy database to make a de-
cision. If the policy doesn’t allow the requested access,
SELinux passes the message ’deny’ back to kernel object
managers. If the access is allowed as per the AV rules,
extended SELinux computes the rate of such requests and
compares the rate with the allowed rate specified in the AV
rules. If the rate is with in the allowed limits, access is
allowed or else denied by communicating the same to the
kernel object managers.

346

4.3 Design Details

The variables that are part of the extension are loaded
along with the SELinux policy file. In memory binary pol-
icy is maintained by SS. As every access request for ker-
nel object is intercepted by SELinux, it would be time con-
suming to check with SS every time. To optimize the per-
formance, AVC has been introduced by SELinux. AVC is
a cache of the binary policy which consists of the access
control information of the recently used subject/object do-
mains. Whenever a request comes to SELinux about a par-
ticular domain, it exports the complete policy related to that
domain into AVC. So, further requests about that domain
can be served by AVC itself.

We exploit the existence of AVC in the same way as orig-
inal SELinux does. The rate control information about the
domains lies in the binary policy. Whenever a request for a
domain is intercepted, rate control information would also
get exported to AVC along with other policy information.
Unlike original SELinux, the extension developed needs dy-
namic information for the enforcement of the extended pol-
icy. We maintain this dynamic information also in AVC
itself along with the binary policy. In the AVC structure it-
self, we maintain the temporal information pertaining to the
rate of usage of that particular access.

4.4 Implementation Details

In the AVC of SELinux we included the new parameter
along in the records that contain subject, object and allowed
access fields. The value of this parameter indicates the al-
lowed rate of use of such access by the subject. To maintain
the current usage of the access, we used moving window
and smoothing average. According to the configured size
of the time, a window is created and number of accesses
made in that time window is considered as the current us-
age. Whenever the current usage exceeds the allowed rate,
it is considered as anomalous and access is denied. To take
care of genuine flash events, we used smoothing average
where we give only partial weight to the exact usage in the
current time window and partial weight to the recent time
windows. If the rate exceeds the allowed rate after smooth-
ing, that indicates growth in several windows and denying
the access is more justified.

5 Experiment & Results

We have chosen to monitor fork and accept calls for the
experiment. We aim to measure the turnaround time of our
test-script (which comprises of a set of instructions) in the
normal system and during the flood fork and accept. In a
normal system, the turnaround time of any process should
not be unpredictable when we run it multiple times. If the

impact of an attack is contained in a system, turnaround
time of concurrent processes will not deviate much from
what it normally used to be. We have chosen to measure the
same in our experiment.

We created a process that calls fork continuously and
ran our test-script concurrently. we ran test-script multi-
ple times to observe the variation in turnaround time. We
did this experiment with and with-out the extension that we
had built. As the process continued to fork, it consumed
more and more system resources and system was spend-
ing more time with this and was unable to attend other pro-
cesses. This is evident from the growing turnaround time
of the test-script. Turnaround time of the test-script had
grown with time when we ran the experiment with out our
extension. When we controlled the rate at which this pro-
cess can fork, we were able to reduce the rate of growth of
turnaround time of the test-script. We repeated the exper-
iment with accept call of a TCP server and got the same
results.

We can conclude from these experiments that when the
rate of resource usage is controlled in one domain, the sys-
tem will be more fair towards the other processes in the sys-
tem. Figure 4 and Figure 5 explain the results graphically.

Figure 4. Variation in Execution Time in fork
experiment

Figure 4 shows the effect of flood of calls to fork on
the turnaround time of test-script. X-axis shows the sys-
tem time and Y-axis shows the turnaround time of the test-
script. First graph of Figure 4, which is of the system not
guarded by our extension, shows the sharp increase in exe-
cution time and abrupt stop that indicates the system’s ’ran
out of resource’ status. Second graph of Figure 4 is of the
system guarded by the rate control extension. It shows the
system’s availability well after flood of calls to fork. As the

347

Figure 5. Variation in Execution Time in accept
experiment

rate of calls to fork is kept under control, there is not much
variation in the turnaround time of the test-script. There is a
slow hike in the turnaround time, as we controlled only rate
of calls to fork but not the total number of processes that are
forked. But, it is evident that controlling the rate had stabi-
lized the turnaround time of other processes, hence, led to a
more available system.

In the second experiment we tried to control response
to TCP connection requests by controlling accept calls. In
Figure 5, it is evident that when there was no control over
the rate of accept, turnaround time of the test-script has
grown arbitrarily and when the rate is controlled, there was
no significant effect on the turnaround time. When the ex-
periment was done with out rate control extension, system
became unusable after responding to several connection re-
quests. When the rate of calls to accept is controlled, sys-
tem stability is improved, which is evident from the graph
in Figure 5.

6 Future Work

The extension with the support of the experimental re-
sults shows the advantage of controlling access among some
domains to keep access times among other domains and in
turn execution times of other processes predictable and con-
sistent and lead to more available systems. This framework
can be made more generic and robust, so that it can work
with all kinds of calls that are being intercepted by SELinux.
Currently we used thresholds which are created through hu-
man expertise. This process can be automated by machine
learning where a module can learn the thresholds.

7 Conclusion

There are a lot of methods available in the literature that
are aimed at detecting and protecting against DoS attacks.
DoS attacks by their very nature are difficult to be miti-
gated. But intelligent early detection, and containing them
will lead to more secure and available systems. The method
we presented in this paper aims at controlling the resource
usage by any entity in the system and restricts the spread of
effect of an attack to other processes in the system, hence
improves the availability of the system.

References

[1] Mandatory access control from wikipedia. In
http://en.wikipedia.org/wiki/Mandatory access control.

[2] National secuirty agency - security enhanced linux. In
http://www.nsa.gov/selinux/info/faq.cfm.

[3] Network ingress filtering: Defeating denial of service
attacks which employ ip source address spoofing. In
http://www.ietf.org/rfc/rfc2267.txt.

[4] Security-enhanced linux from wikipedia. In
http://en.wikipedia.org/wiki/SELinux.

[5] Syn cookies. In http://en.wikipedia.org/wiki/SYN cookie.
[6] D. Adkins, K. Lakshminarayanan, A. Perrig, and I. Stoica.

Taming ip packet flooding attacks. In In HotNets-II. ACM
Press, 2003.

[7] J. P. Anderson. Computer security technology planning
study. Technical report, Oct. 1972.

[8] G. Carl, G. Kesidis, R. R, and S. Rai. Denial-of-service
attack-detection techniques. In IEEE Computer Society,
February 2006.

[9] L. Feinstein. Statistical approaches to ddos attack detection
and response. In Proc. DARPA Information Survivability
Conf. and Exposition, pages 300–314, 2003.

[10] S. M, M. Greenwald, C. Gunter, S. Khanna, and
S. Venkatesh. Mitigating dos attack through selective bin
verification. In Secure Network Protocols, (NPSec). 1st
IEEE ICNP Workshop on, pages 7–12, 2005.

[11] F. Mayer, K. MacMillan, and D. Caplan. SELinux by Exam-
ple: Using Security Enhanced Linux. Prentice Hall.

[12] D. Moore, G. Voelker, and S. Savage. Inferring internet
denial-of-service activity. In Proc. Usenix Security Symp.,
Usenix Assoc., 2001.

[13] U. S. D. of Defense. Trusted computer system evaluation
criteria. DoD Standard 5200.28-STD, December 1985.

[14] S. Smalley and C. Vance. Implementing selinux as a linux
security module. Technical report.

[15] R. Spencer, S. Smalley, P. Losocco, M. Hibler, D. Ander-
sen, and J. Lepreau. The flask security architecture: Sys-
tem support for diverse security policies. Technical Report
UUCS-98-014, 1998.

[16] B. Waters, A. Juels, J. A. Halderman, and E. W. Felten. New
client puzzle outsourcing techniques for dos resistance. In
CCS ’04: Proceedings of the 11th ACM conference on Com-
puter and communications security, pages 246–256, New
York, NY, USA, 2004. ACM Press.

348

