
International Journal of Security and Its Applications

Vol. 6, No. 2, April, 2012

229

Automatic Analysis Method for SELinux Security Policy

Gaoshou Zhai and Tong Wu

School of Computer and Information Technology, Beijing Jiaotong University

gszhai@bjtu.edu.cn

Abstract

Configuration of security policies is one of the most important prerequisites for secure and

credible running of secure operating systems. Although it is a hard, tedious and complicated

task within which errors and bugs are incidental at all time. Accordingly, methods for

automatic analysis of SELinux security policies are discussed in this paper. Firstly, security

mechanism, security models and policy description language for SELinux are briefly

introduced. Then a security analysis model is constructed in order to verify validity and

integrity of security policies and all rules for Type Enhancement (TE), Role-Based Access

Control (RBAC) are rewritten as formal expressions while all subjects, objects and elements

are described as sets and mappings formally. Algorithms for analysis are designed based on

such model. Comparing with that in SELinux Access Control (SELAC) model, scope of

possible values for role can be reduced and thus a great many invalid security contexts are

eliminated in our model. Finally, a prototype is implemented in C language and a security

policy configuration case as to an application system called Student-Teacher system is

designed to be used to test the prototype. Test results show that the prototype and

corresponding methods can verify validity and integrity of policy configuration and are

potential to be used to assist people to complete correct and reliable configuration.

Keywords: Secure Operating Systems; Access Control; SELinux; Security Policy; Analysis

Method

1. Introduction

Mandatory access control (MAC) mechanism is a necessary part of secure operating

systems, which are the key foundation of security for information systems [1-5]. SELinux is

one of the most excellent MAC mechanisms inside Linux and it is currently implemented as a

loadable security application module based on Linux Security Modules (LSM) [6].

SELinux can enforce a policy based on robust mandatory access control and can be used

cooperated with discretionary access control inside Linux kernel to implement effective

control whenever a subject request to access an object. But it is hard for people to perform

security policy configuration correctly and inerrably and such task is both time consuming

and tedious. Therefore, it is rather significant to study automatic analysis method about

security policy configuration so as to build appropriate computer-aided configuration tools [7].

In this paper, SELinux security mechanism and its policy description language are briefly

discussed. Then the analysis model is built up to verify the validity and integrity of SELinux

policies and formal representations for both security policy language and policy analysis

goals are generated. Finally, a prototype is implemented using C language based on such

model and corresponding algorithms while a case of security policy configuration as to an

application system called Student-Teacher system is designed to be used to test the prototype.

International Journal of Security and Its Applications

Vol. 6, No. 2, April, 2012

230

2. Methodology

2.1. Security mechanism of SELinux

Nowadays, SELinux is implemented based on LSM (refer to Figure 1) and Flask (refer to

Figure 2).

2.2. Security Policy Description of SELinux

SELinux supports three types of security models including Type Enhancement (TE),

Role-Based Access Control (RBAC) and Multi-Level Security (MLS). Among SELinux

policies, TE rules account for absolutely majority and RBAC rules account for minority

while MLS rules are not optional for default. In addition, two types of logic structural

rules, i.e. constraints rules and conditional rules are provided in SELinux policy

configuration language. Therefore, rules except that for MLS are focused in this paper.

Policy configuration is much complicated and intractable. A few demonstration

polices have been provided by system developers so as to make users’ policy design

more convenient, among which strict policy and targeted policy are rather widely used.

And a new architecture for configuration files and directories as to so-called reference

policy is established in order to improve modularization and maintainability [8] .

2.3. Analysis Model for SELinux Security Policies

It is taken aim at validity and integrity for policy analysis in this paper, i.e. to make

sure that the policy configuration has carried out expected access regulations and to

verify that subjects inside Trusted Computing Base (TCB) are prohibited to read wrong

information from non-trusted objects while sensible information inside TCB objects are

protected from wrongly modified.

Thereafter, all rules for TE and RBAC are rewritten as formal expressions (refer to

Table 1) while all subjects, objects and other elements for security policies are marked

as sets and mappings formally (refer to Definition 1-10). In addition, Definition 11-24

are used to verify the validity of policies while Definition 25-31 are used to verify the

integrity of policies.

Comparing with SELinux Access Control (SELAC) model [9], scope of possible

values for role can be reduced and thus a great many invalid security contexts are

eliminated in our model.

User Space

Kernel Space

Access

 Request

Allow/

Unallow

Object

Manger

(LSM Hook

Functions)

File System of SELinux

Interface of Policy Management

Access

Vector

Security Server

(Access Rules

and Decision

Logic for

Policies)

Access

Request

Allow/

Unallow

Process in User-Mode
User Space

Kernel Space
System Calls

Error Inspecting

DAC Checking

LSM Hook Functions

Access Resources

SELinux

LSM

Modules

Access Request

Allow/Unallow

Figure 1. Framework between LSM and SELinux Figure 2. Flask framework of SELinux

International Journal of Security and Its Applications

Vol. 6, No. 2, April, 2012

231

Table 1. Formal Expressions of Policy Rules

Policy rules Formal expressions

attribute attribute_name; attribute(attribute_name)

type type_name, a1, a2; type(type_name, a1, a2)

role role_name types { t1 t2 }; role(role_name, t1 ,t2)

user user_name roles { r1 r2 }; user(user_name, r1 ,r2)

dominance { role r1 { r2 r3 }} dom(r1, r2, r3)

class class_name { p1 p2 } class(class_name, p1 , p2)

allow t1 t2:c p; allow(t1 ,t2, (c, p))

constrain c p expression; contrain((c, p), expression)

type_transition t1 t2:process t3; type_transtion(t1 ,t2 ,t3)

Definition 1 For an object a, if there is a rule like ()attribute a , then a is judged as an attribute

while all attributes are marked as the set { | , ()}A a a attribute a  .

Definition 2 For an object t, if there is a rule like ()type t or
1(, , ,)ntype t a a

where
1, , na a A ,

then t is judged as a type while all types are marked as the set
1{ | , () (, , ,)}nT t t type t type t a a   .

Definition 3 For an object r, if there is a rule like ()role r or
1(, , ,)nrole r t t

where

1, nt t T ,

then r is judged as a role while all roles are marked as the set
1{ | , () (, , ,)}nR r r role r role r t t   .

Definition 4 For
1, , , nr r r R , if there is a rule like

1(, ,)ndom r r r , then
1, nr r

is judged as

dominated by r .

Definition 5 For an object u, if there is a rule like ()user u or
1(, , ,)nuser u r r where

1, , nr r R ,

then u is judged as a user while all users are marked as the set

1{ | , () (, , ,)}nU u u user u user u r r   .

Definition 6 For objects c and
1, , np p , if there is a rule like ()class c or

1(, , ,)nclass c p p , then

c is judged as a class while all classes are marked as the set
1{ | , () (, , ,)}nC c c class c class c p p   .

And
1, , np p and

1(,), , (,)nc p c p can be judged according to such rules like
1(, , ,)nclass c p p

while all class permissions are marked as the set
1 1{(,) | , (, , ,), { , }}n nQ c p c class c p p p p p   .

Definition 7 For t T  , the mapping :A T Acan be defined as () { | (, '), '}A t a type t A a A 

where attribute set 'A A .

Definition 8 For t T  , the mapping : ()aT A T T can be defined as ()aT t t while for

a A  it can be defined as () { | (, '), '}aT a t type t A a A  where attribute set 'A A .

Definition 9 For r R  , the mapping :rT R T can be defined as

 () { | ((, '), ') ((, '), , ('))}rT r t role r T t T dom r R r' R' t T r     .

Definition 10 For u U  , the mapping :R U R can be defined as

 () { | (, '), '}R u r user u R r R  where users set 'R R .

Definition 11 Space for subject security contexts can be defined as the set

 {(, ,) | , (), ()}rS u r t u U r R u t T r    .

Definition 12 Space for object security contexts (i.e. Whole space for security contexts) can

be defined as the set {(, ,) | , objetc_r, }O u r t u U r t T S     where object_r is some user

specified for the object.

Definition 13 For o O  and given that (, ,)o u r t , the mapping :O

tProject O T , :O

rProject O R

and :O

uProject O U can be defined as ()O

tProject o t , ()O

rProject o r and ()O

uProject o u respectively.

International Journal of Security and Its Applications

Vol. 6, No. 2, April, 2012

232

Definition 14 For
0c C  , the mapping :Q C Q can be defined as

0 0 0 1 1() {(,) | (, , ,), { , }}n nQ c c p class c p p p p p  .

Definition 15 For
0t T  , the mapping : ()M T T Q can be defined as

0 1 2 0 1 2() {(,(,)) | (, , '), (), (),(,) '}a aM t t c p allow X X Q t T X t T X c p Q   

where
1 2, ()X X A T  and ' ()Q Q C .

Definition 16 For s S  , o O  , c C  and (,) ()c p Q c  , the mapping

: () { , }Con S O Q true false  can be defined as follows:

where the class permission set 'Q Q while (,)expression s o is logic expression for subject and

object.

Definition 17 For
0t T  , the mapping :N T T Q can be defined as

0 1 2 0 1 2() {(,(,)) | (, , '), (), (),(,) '}a aN t t c p auditallow X X Q t T X t T X c p Q   

where
1 2, ()X X A T  and ' ()Q Q C .

Definition 18 For x T Q   and given that (,(,))x t c p , the mapping : ()T Q

qProject T Q Q 

and : ()T Q

tProject T Q T  can be defined as () (,)T Q

qProject x c p  and ()T Q

tProject x t 

respectively.

Definition 19 For
0t T  , the mapping :pD T T T can be defined as

0 0() {(,) | _ (, ,), , }p e p e p e pD t t t type transition t t t t t T  .

Definition 20 For
pt T  , the mapping :E T T can be defined as

() { | (), () , () (,)}T Q T Q

p e p t e qE t t x M t Project x t Project x file entrypoint      .

Definition 21 For t T  , the mapping :allowT T T T can be defined as follows:

() {(,) | , (), () ,

 () (,),

 () , (),

T Q

allow e p t p

T Q

q

T Q

t e e

T t t t T T m n M t Project m t

Project m process transition

Project n t t E t







     



 

 () (,)}T Q

qProject n file execute 

Definition 22 For
0t T  , the mapping :tranT T T can be defined as

0 0 0() { | (),(,) () ()}tran p e e p p allowT t t T t E t t t D t T t      .

Definition 23 For s S  , the mapping : S O Q  can be defined as follows:

Definition 24 For o O  , the mapping :O S Q  can be defined as follows:

Definition 25 For o O  and given that : { , }TCBG T true false is single mapping, the

mapping : { , }TCBG O true false can be defined as follows:.

() {(,) | ((),) (()), (, ,) ,

 (())= () if (,)}

O O

t t

O O

tran t t

o s q O Q Project o q M Project s Con s o q true

T Project s Project o q process transition

     



(',)
if

(,) , (,) '
(, , (,))

if

constrain Q expression
false

expression s o false c p Q
Con s o c p

true Others




 
 



if ()
()

if ()

O

TCB t

TCB O

TCB t

true G Project (o) true
G o

false G Project (o) false

 
 



() {(,) | ((),) (()), (, ,) ,

 (())= () if (,)}

O O

t t

O O

tran t t

s o q O Q Project o q M Project s Con s o q true

T Project s Project o q process transition

     



International Journal of Security and Its Applications

Vol. 6, No. 2, April, 2012

233

Definition 26 Define the set { | () }TCB TCBT t T G t true   and the set

 { | () }TCB TCBO o O G o true   .

Definition 27 Define the single mapping : { , , , }F Q read write rw none where read, write and

rw represent reading, writing, reading & writing information flows from subject to object

while none represents that there is no reading or writing information flows from subject to

object.

Definition 28 For
0o O  , the mapping :directI O O can be defined as follows:

Definition 29 For
0o O  , the mapping :allI O O can be defined as

()

0 0() { | (), }n

all directI o o o I o n   where ()n

directI represents invoke of
directI for n times successively.

Definition 30 For
0 TCBo O  , the mapping :break TCBI O O can be defined as

0 0() { | (), }break all TCBI o o O o I o o O    .

Definition 31 For
0 TCBo O  , the mapping :realI O O can be defined as follows:

3. Prototype and Results

Algorithms are designed based on above analysis model and a corresponding

prototype is implemented in C language, which is made up of reference policy

transformation module, security policy extract module, security policy analysis module

and analysis result display module. In addition, a group of security policy modules are

designed based on the architecture of reference policy as to so-called student-teacher

system and are used to test the prototype. Test results show that the prototype not only

can get all objects with corresponding permissions that any subject with specified

security context <user, role, type> can access but also can get all subjects with

corresponding permissions that any object with specified security context <user, role,

type> can be accessed. Moreover, all rules that could potentially influence integrity of

subjects and objects can be detected.

4. Summary

In this paper, an improved SELAC model is constructed and corresponding prototype

is designed to perform automatic analysis of SELinux policies . And test results are

satisfactory.

Nevertheless, some simplified process is done in this paper. For example, Boolean

variables and a few special signs and macro blocks are ignored during the analysis. All

these details ought to be full considered in the future research. In addition, both method

and prototype for analysis must be improved farther for practicability.

Acknowledgements

The authors would like to give grateful thanks to the support of the Fundamental

Research Funds for the Central Universities (No.2009JBM019).

0 0

0

() { | ((,) (), () ())

 ((,) (), () ())}

directI o o O o q o F q read F q rw

o q o F q write F q rw

      

     

0 0 0

0

() { | (), , ((())),

 ((())}

O Q O

real direct TCB o t

O Q O

o t

I o o O o I o o O o Project N Project o

o Project N Project o





    



International Journal of Security and Its Applications

Vol. 6, No. 2, April, 2012

234

References

[1] G. Zhai, J. Zeng, M. Ma and L. Zhang, “Implementation and Automatic Testing for Security

Enhancement of Linux Based on Least Privilege”, In: Proceedings of the 2nd International

Conference on Information Security and Assurance (ISA 2008), pp.181-186. IEEE Computer Society,
California (2008).

[2] G. Zhai, J. Zeng, M. Ma and L. Zhang, “Implementation and Automatic Testing for Security

Enhancement of Linux Based on Least Privilege”, International Journal of Security and Its

Applications, vol. 2, no. 3, pp. 93-100 (2008).

[3] G. Zhai and Y. Li, “Analysis and Study of Security Mechanisms inside Linux Kernel”, In:

Proceedings of 2008 International Conference on Security Technology (SECTECH2008), pp. 58-61.
IEEE Computer Society, California (2008).

[4] G. Zhai and Y. Li, “Study and Implementation of SELinux-like Access Control Mechanism Based on

Linux”, In: T.-k. Kim, T.-h. Kim, A. Kiumi (eds.): SecTech 2008- Advances in Security Technology,

CCIS (Communications in Computer and Information Science), vol. 29, pp. 50-66. Springer-Verlag
Berlin, Berlin (2009).

[5] G. Zhai, H. Niu, N. Yang, M. Tian, C. Liu and H. Yang, “Security Testing for Operating System and

Its System Calls”, In: D. Slezak et al. (Eds.): SecTech 2009, CCIS (Communications in Computer
and Information Science), vol. 58, pp. 116-123. Springer-Verlag Berlin, Berlin (2009).

[6] S. Smalley, C. Vance and W. Salamon, “Implementing SELinux as a Linux security module”,
Technical Report 01-043, NAI Labs (2001).

[7] G. Zhai, W. Ma, M. Tian, N. Yang, C. Liu and H. Yang, “Design and Implementation of a Tool for

Analyzing SELinux Secure Policy”, In: Proceedings of 2nd International Conference on Interaction

Sciences: Information Technology, Culture and Human (ICIS 2009), pp. 446–451. Association for
Computing Machinery (ACM), New York (2009).

[8] F. Mayer, K. MacMillan and D. Caplan, “SELinux By Example: Using Security Enhanced Linux”,
Prentice Hall (2006).

[9] G. Zanin and L. V. Mancini, “Towards a Formal Model for Security Policies Specification and

Validation in the SELinux System”, In: Proceedings of the 9th ACM Symposium on Access Control

Models and Technologies, pp. 136-145. Association for Computing Machinery (ACM), New York
(2004).

Authors

Gaoshou Zhai received the B.Sc., Master and Ph.D. degrees in 1993,

1996 and 2000 respectively. From 2000 to 2002, he was a lecturer in the

School of Computer and Information Technology at Beijing Jiaotong

University. Since 2002 he has been an associate professor and since 2007

he has been vice director of the Department of Computer Science. From

January to May in 2006, he had been to the department of computer

science at UIUC as a visiting scholar. His research interests include

operating systems, information security, system software design and

automatic tools for software engineering, algorithm analysis and design,

artificial intelligence and intelligent traffic systems. In these areas he has

published more than 40 papers in journals and conference proceedings.

He served as program committee member of SERA2009 and invited

review specialist for Chinese Science and Technology Papers Online

sponsored by Centre for Science and Technology Development, MEPRC.

He is also invited to review papers for Journal of Xi'an Jiaotong

University, Journal of Beijing Jiaotong University, Journal of Lanzhou

Jiaotong University, ICCIT2009 and ICSAI2012. He is a member of

ACM and SERSC, a senior member of CCF and IACSIT.

