
Introduction
Concepts

The nuts and bolts
Policy syntax

Writing an SELinux module
Wrap-up

Breaking the Ice with SELinux

Eli Billauer

December 8th, 2008

Eli Billauer Breaking the Ice with SELinux

Introduction
Concepts

The nuts and bolts
Policy syntax

Writing an SELinux module
Wrap-up

1 Introduction
What SELinux is
The goals of this lecture
SElinux pros and cons
Getting around

2 Concepts
The Policy
The Context

3 The nuts and bolts
The big picture
Misc. issues
What makes it tick
File labeling

4 Policy syntax
Policy rules
Declarations

5 Writing an SELinux module
The basics
The module’s anatomy
Getting it all together
Some extra issues

6 Wrap-up

Eli Billauer Breaking the Ice with SELinux

Introduction
Concepts

The nuts and bolts
Policy syntax

Writing an SELinux module
Wrap-up

What SELinux is
The goals of this lecture
SElinux pros and cons
Getting around

Introduction

Eli Billauer Breaking the Ice with SELinux

Introduction
Concepts

The nuts and bolts
Policy syntax

Writing an SELinux module
Wrap-up

What SELinux is
The goals of this lecture
SElinux pros and cons
Getting around

What SELinux is

In a nutshell: A machine that tells you permission is denied.

Implementation: A kernel module + (a lot of) supporting
utilities + (a lot of) configuration files

The kernel module is asked for permissions before certain
operations are about to happen (“hooks”)

Fine-grained

SELinux doesn’t care about classic user names and groups

Eli Billauer Breaking the Ice with SELinux

Introduction
Concepts

The nuts and bolts
Policy syntax

Writing an SELinux module
Wrap-up

What SELinux is
The goals of this lecture
SElinux pros and cons
Getting around

The goals of this lecture

Make the existing docs understandable

Explain the basics of writing rules

Show how to play around with SELinux without compromising
the system’s security

Demonstrate a quick method for limiting an application’s
permissions to minimum, by making an SELinux module

Eli Billauer Breaking the Ice with SELinux

Introduction
Concepts

The nuts and bolts
Policy syntax

Writing an SELinux module
Wrap-up

What SELinux is
The goals of this lecture
SElinux pros and cons
Getting around

Why SELinux is good

Resolution: Give the application permissions as necessary, no
more

Targeting: Let everyone do whatever they want, except for a
few applications with exploit potential

Jailing: The application is not likely to escape from its state
of limited permissions

Flexibility: The machine can be configured for other purposes,
such as controlling information access for employers

Eli Billauer Breaking the Ice with SELinux

Introduction
Concepts

The nuts and bolts
Policy syntax

Writing an SELinux module
Wrap-up

What SELinux is
The goals of this lecture
SElinux pros and cons
Getting around

Problems with SELinux

Complicated

Unhelpful documentation (that’s an understatement)

... and therefore very difficult to learn

Careless hacking can create huge security holes

May cripple applications without the user understanding why

Is brought to end users with a “trust us, we’re the experts”

... and leaves very little choice unless you want to dive in

Eli Billauer Breaking the Ice with SELinux

Introduction
Concepts

The nuts and bolts
Policy syntax

Writing an SELinux module
Wrap-up

What SELinux is
The goals of this lecture
SElinux pros and cons
Getting around

SELinux: What’s in the package

The kernel security core: The LSM (Linux Security Modules)

”The example policy”: The basic security rules used

Policy modules: Rules specific to certain applications

Filesystem extension to allow extra attributes (the context)
for each file.

User-space utilities and daemons directly interacting with the
LSM.

Housekeeping utilities (essential to configure SELinux, but
don’t interact with the kernel, such as the rules compiler).

SELinux aware versions of common utilities: ls, ps, id, find,
etc.

Eli Billauer Breaking the Ice with SELinux

Introduction
Concepts

The nuts and bolts
Policy syntax

Writing an SELinux module
Wrap-up

What SELinux is
The goals of this lecture
SElinux pros and cons
Getting around

Do I have SELinux?

If you have a /selinux directory with something in it,
SELinux is loaded in the kernel.

Also try the sestatus command. This is what you get on
Fedora Core 9 by default:

[eli@rouge home]$ sestatus
SELinux status: enabled
SELinuxfs mount: /selinux
Current mode: enforcing
Mode from config file: enforcing
Policy version: 22
Policy from config file: targeted

Note that SELinux is enabled and enforcing. Simply put, we’re on.
Eli Billauer Breaking the Ice with SELinux

Introduction
Concepts

The nuts and bolts
Policy syntax

Writing an SELinux module
Wrap-up

The Policy
The Context

Concepts

Eli Billauer Breaking the Ice with SELinux

Introduction
Concepts

The nuts and bolts
Policy syntax

Writing an SELinux module
Wrap-up

The Policy
The Context

The Policy

Policy – A set of declarations and rules, telling the SELinux
core in the kernel what is permitted and how to behave in
different situations

Targeted policy – A policy based upon the paradigm, that
only a few selected applications should be restricted by
SELinux. All other activity relies on good old UNIX security

Strict policy – A policy which attempts to control all activity
with SELinux

The commonplace (and sane?) policy is a Targeted policy.

Eli Billauer Breaking the Ice with SELinux

Introduction
Concepts

The nuts and bolts
Policy syntax

Writing an SELinux module
Wrap-up

The Policy
The Context

How the policy is consumed

The policy is compiled in user space

The m4 macro preprocessor is used prior to compilation
(optional)

The initial policy binary is loaded by init at boot

Policy modules (binaries) can be loaded and unloaded at any
time

Eli Billauer Breaking the Ice with SELinux

Introduction
Concepts

The nuts and bolts
Policy syntax

Writing an SELinux module
Wrap-up

The Policy
The Context

The Context

SELinux marks every process, file, pipe, socket, etc. with a
piece of information called the context.

SELinux allows or denies actions based upon rules saying “a
process of context X can do so and so in relation with
something with context Y”

The context is completely unrelated to classic UNIX user ID,
group ID or whatever.

In particular: su, sudo and suid-bit games don’t change the
context. To SELinux you remain who you were before.

In short: In SELinux, the context is everything.

Eli Billauer Breaking the Ice with SELinux

Introduction
Concepts

The nuts and bolts
Policy syntax

Writing an SELinux module
Wrap-up

The Policy
The Context

The Context (cont.)

The context consists of three parts: The user, the role, and
the type
In a commonplace policy, 99% of the decisions are made
based upon type only
When the context applies to a process, the type is called “the
domain”
There is no practical difference between a type and a domain
All three components are just names. The policy rules gives
them significance.
In particular, if an object has the same type as a process’
domain, this means something only if the policy explicitly says
so (it usually does).
All users, roles and types can be applied to any object (given
the permissions), since they are just names

Eli Billauer Breaking the Ice with SELinux

Introduction
Concepts

The nuts and bolts
Policy syntax

Writing an SELinux module
Wrap-up

The Policy
The Context

A simple session

On a SELinux-enabled system:

[eli@rouge home]$ ls -Z

drwxrwxr-x eli eli unconfined_u:object_r:user_home_t:s0 mydir

-rw-rw-r-- eli eli unconfined_u:object_r:user_home_t:s0 myfile

[eli@rouge home]$ ls -Z /etc/passwd

-rw-r--r-- root root system_u:object_r:etc_t:s0 /etc/passwd

[eli@rouge home]$ ps -Z

LABEL PID TTY TIME CMD

unconfined_u:unconfined_r:unconfined_t:s0-s0:c0.c1023 22599 pts/9 00:00:00 bash

unconfined_u:unconfined_r:unconfined_t:s0-s0:c0.c1023 22623 pts/9 00:00:00 ps

[eli@rouge home]$ id

uid=1010(eli) gid=500(eli) groups=500(eli) context=unconfined_u:unconfined_r:unconfined_t:s0-s0:c0.c1023

Eli Billauer Breaking the Ice with SELinux

Introduction
Concepts

The nuts and bolts
Policy syntax

Writing an SELinux module
Wrap-up

The big picture
Misc. issues
What makes it tick
File labeling

The nuts and bolts

Eli Billauer Breaking the Ice with SELinux

Introduction
Concepts

The nuts and bolts
Policy syntax

Writing an SELinux module
Wrap-up

The big picture
Misc. issues
What makes it tick
File labeling

What SELinux is actually doing

Loaded in the kernel, the Linux Security Module performs three
ongoing tasks, based upon the rules loaded from user space (i.e.
the Policy):

Grant or deny access permission to processes requesting to
perform action on objects

Grant or deny permission for context changes of objects and
processes.

Decide what context to give to new objects and processes at
their creation.

SELinux permissions are given on top of classic UNIX permissions.
An action will take place only if both permissions are granted.

Eli Billauer Breaking the Ice with SELinux

Introduction
Concepts

The nuts and bolts
Policy syntax

Writing an SELinux module
Wrap-up

The big picture
Misc. issues
What makes it tick
File labeling

The foodchain: Roles, users and types

SELinux policy constrains which (SELinux) users can get
which roles

It’s common but not necessary, that each SELinux user can
and will have one single role

The role limits which domains (types) its owner can enter

RBAC (Role-Based Access Control): Restrict user’s
permissions by allocating roles, which in turn limit their
variety of types, and hence limit their actions.

The commonplace Linux policy is Type Enforced (TE), so
roles and users are of little importance.

Eli Billauer Breaking the Ice with SELinux

Introduction
Concepts

The nuts and bolts
Policy syntax

Writing an SELinux module
Wrap-up

The big picture
Misc. issues
What makes it tick
File labeling

The foodchain: Roles, users and types (cont.)

Upon login (not su), the shell process is given a SELinux user
and a role, typically unconfined u and unconfined r.

These are most likely to remain throughout the session for all
child processes.

Processes created by init or crond are likely to get system u
and system r

Eli Billauer Breaking the Ice with SELinux

Introduction
Concepts

The nuts and bolts
Policy syntax

Writing an SELinux module
Wrap-up

The big picture
Misc. issues
What makes it tick
File labeling

So why should we care about users and roles at all?

When declaring a new type, we must explicitly allow them to
the relevant roles. More about this later.

seinfo -r will print out all roles known to the system

Again: Remember that the login user and SELinux user are
unrelated, unless otherwise configured.

Roles and user are currently meaningless on objects (files,
sockets etc.)

The only current rule says that except for privileged domains,
the user of an object can’t be changed (see the “constraints”
file in the policy source tree).

Bottom line: Let’s keep our eyes on the types

Eli Billauer Breaking the Ice with SELinux

Introduction
Concepts

The nuts and bolts
Policy syntax

Writing an SELinux module
Wrap-up

The big picture
Misc. issues
What makes it tick
File labeling

SELinux objects and classes

The term “object” in SELinux stands for files, directories, file
descriptors, pipes, sockets, network interfaces and many more.

An object is the thing some process asks for permission to do
something on

There are more than 70 classes of SELinux objects

Each class defines which permissions are applicable

There is a “process” class, but in the jargon, a process is
usually not considered an object

... but rather the subject (as in English grammar terminology)

Think subject, action, object as in “The cat drinks the milk”

This confusion does not affect the policy rules’ syntax

Eli Billauer Breaking the Ice with SELinux

Introduction
Concepts

The nuts and bolts
Policy syntax

Writing an SELinux module
Wrap-up

The big picture
Misc. issues
What makes it tick
File labeling

Multi Level/Category Security

[eli@rouge home]$ ls -Z

drwxrwxr-x eli eli unconfined_u:object_r:user_home_t:s0 mydir

-rw-rw-r-- eli eli unconfined_u:object_r:user_home_t:s0 myfile

[eli@rouge home]$ cat /selinux/mls

1

So I have MLS on!
MLS and MCS is the forth element in the context (s0 in the
example above).
These mechanisms are intended to prevent users from leaking
information by mistake (think “top secret” stamp)
For example, the mail application may be prevented to read
sensitive files
Can be ignored if we don’t use it (so we shall)
Implemented with “mlsconstraint” rules in mls and mcs files
in the policy source directory

Eli Billauer Breaking the Ice with SELinux

Introduction
Concepts

The nuts and bolts
Policy syntax

Writing an SELinux module
Wrap-up

The big picture
Misc. issues
What makes it tick
File labeling

How SELinux decides what to permit

The SELinux kernel module will permit an operation if and only if:

1 A permission rule (allow or allowaudit) matches the types
and classes of the involved elements.

2 None of the contraint rules is violated

Remarks:

The decisions are cached in the Access Vector Cache

As of today’s targeted policy, the constraints are very basic,
meaning that only the types carry a significance

Eli Billauer Breaking the Ice with SELinux

Introduction
Concepts

The nuts and bolts
Policy syntax

Writing an SELinux module
Wrap-up

The big picture
Misc. issues
What makes it tick
File labeling

How files get their context

The context is stored for each file as attributes on an
extended filesystem, XFS (man attr)

As a starting point, the setfiles utility sets the context to
all files, according to some configuration file (typically
/etc/selinux/targeted/contexts/files/file contexts)

This is called relabeling

Don’t edit this file directly. Instead, use semanage fcontext
to permanently change the context of files and directories
(regular expression)

Installing a policy module may also alter file contexts
permanently

restorecon does the same as setfiles, but is intended for
a few files only (mostly to fix small mismatches)

Eli Billauer Breaking the Ice with SELinux

Introduction
Concepts

The nuts and bolts
Policy syntax

Writing an SELinux module
Wrap-up

The big picture
Misc. issues
What makes it tick
File labeling

How files get their context (cont.)

Use chcon to alter some file’s context without changing the
configuration files. Note that this change is temporary until
the next relabeling.

The policy includes rules which determine file types at
creation (more about this later)

Contradictions between policy rules and relabeling
configuration files are possible and dangerous.

Filesystems which can’t carry extended attributes get a
uniform context, depending on options of the mount operation
and system configuration files (e.g. VFAT, NFS, Samba, ISO)

Note that tar doesn’t store and extract contexts unless
explicit flags are given

Eli Billauer Breaking the Ice with SELinux

Introduction
Concepts

The nuts and bolts
Policy syntax

Writing an SELinux module
Wrap-up

Policy rules
Declarations

Policy syntax

Eli Billauer Breaking the Ice with SELinux

Introduction
Concepts

The nuts and bolts
Policy syntax

Writing an SELinux module
Wrap-up

Policy rules
Declarations

The “allow” rule

allow Source Target:Class Permission;

This means “grant Permission to a process of domain (type)
Source on objects of type Target and class Class”

Example:
allow unconfined t mytype t:file read ;

... which means “allow processes in domain (type)
unconfined t read permission on files of type mytype t”

There is no need to write permission rules from scratch

audit2allow will do most of the work for us

It’s extremely important to understand what the rules say

Eli Billauer Breaking the Ice with SELinux

Introduction
Concepts

The nuts and bolts
Policy syntax

Writing an SELinux module
Wrap-up

Policy rules
Declarations

Other allow-likes

auditallow – Exactly like allow, but makes entries in the
log (as in denials)

dontaudit – This will not grant permission, but not log
anything either

neverallow – Not really a rule, but tells the rule compiler to
exit with an error, if the specified permissions are granted by
other rules. Used as an extra safeguard against bugs in the
policy

Except for the opening keyword, the three above have the
same syntax as allow

In case of contradiction between rules, the rule appearing later
takes effect.

Eli Billauer Breaking the Ice with SELinux

Introduction
Concepts

The nuts and bolts
Policy syntax

Writing an SELinux module
Wrap-up

Policy rules
Declarations

Type transitions for objects

Every created object has a default context

For example, files and directories are created by default with
their parent directory’s context

It’s often desireable that the type of the new object will
depend on who created it. “Who” means what domain (type)
the process had.

For example: If the X server creates a file in the /tmp
directory, it should have type xdm tmp t, but if a “normal
user” process does so, it should be user tmp t

The solution: Type transitions

Eli Billauer Breaking the Ice with SELinux

Introduction
Concepts

The nuts and bolts
Policy syntax

Writing an SELinux module
Wrap-up

Policy rules
Declarations

Type transitions for objects (cont)

type transition Source Target:Class new type;
This means “any object of class Class, which is created by a
process in the domain (type) Source, and would by default get
the type Target, will get the type new type instead”

Example:
type transition sshd t tmp t:file sshd tmp t;

... which means that if a process running in the sshd t
domain (most likely the ssh deamon) creates a plain regular
file which should have gotten the tmp t type (most likely
because it’s in the /tmp directory), it should get the
sshd tmp t instead.
Note that this is not a permission rule. Rather, this tells
SELinux itself to perform an action.
But wait... this requires some permissions!

Eli Billauer Breaking the Ice with SELinux

Introduction
Concepts

The nuts and bolts
Policy syntax

Writing an SELinux module
Wrap-up

Policy rules
Declarations

Type transitions for objects (cont)

The type transition for objects doesn’t require an additional
permission rule

But several other actions need permission:

Read-write access to the parent directory

Creating a new file or directory with the new type

To make things easier, a macro bundles the type transition
statement with the permissions, file type auto trans

Paraphrasing the last example, the following macro statement
covers a variety of file types (plain files, directories, symlinks
etc) and also handles the permissions. All in one:

file type auto trans(sshd t, tmp t, sshd tmp t);

Eli Billauer Breaking the Ice with SELinux

Introduction
Concepts

The nuts and bolts
Policy syntax

Writing an SELinux module
Wrap-up

Policy rules
Declarations

Domain transitions for processes

type transition Source Target:process new type;

This means “when a process in the domain Source executes a
file of type Target, change the process’ domain to new type.

Occurs when an application is executed – an exec() call

Note that it’s the same syntax as for objects, only the Class is
held as process.

Example:
type transition sshd t shell exec t:process user t;

... which means that if a process in the sshd t domain runs
an executable of type shell exec t (a shell, most likely) the
process will continue in the user t domain.

For processes, the type transition statement doesn’t
include the permission.

Eli Billauer Breaking the Ice with SELinux

Introduction
Concepts

The nuts and bolts
Policy syntax

Writing an SELinux module
Wrap-up

Policy rules
Declarations

Type transitions for processes (cont)

A lot of permissions need to be explicitly declared: The
transition itself, reading and running the executable, and
much more

The domain auto trans macro includes the type transition
statement and a lot of relevant permissions (such as allowing
a pipe run between the two relevant domains)

So instead of the previous example, we may want to go:

domain auto trans(sshd t, shell exec t, user t);

In the absence of a matching transition rule, the executable
will run without changing the domain. That requires the
execute no trans permission

Eli Billauer Breaking the Ice with SELinux

Introduction
Concepts

The nuts and bolts
Policy syntax

Writing an SELinux module
Wrap-up

Policy rules
Declarations

Type sets and class sets

A set can be put where a single type or class would normally
appear, as long as it makes sense (to whom?)

Curly brackets ’{’ and ’}’ with space-delimited elements mean
“for each element”

The tilde character preceding an expression indicates the
complement of the set

The asterisk * represents all types or classes

A minus sign preceding an element, within a curly brackets
expressions reduces the element from the set

Examples:

allow unconfined t mytype t:file { read getattr };
allow unconfined t mytype t:file * ;

Eli Billauer Breaking the Ice with SELinux

Introduction
Concepts

The nuts and bolts
Policy syntax

Writing an SELinux module
Wrap-up

Policy rules
Declarations

role declaration

role ROLE types TYPE;

Meaning “it’s legal for a process context with role ROLE to
be in the domain TYPE”

Sets can be used for the type, but not for the role

For a list of types currently known by the kernel: seinfo -r

An attempt to enter a domain with an unauthorized role, will
cause an “invalid context” error.

Example:

role unconfined r types mytype t ;

Eli Billauer Breaking the Ice with SELinux

Introduction
Concepts

The nuts and bolts
Policy syntax

Writing an SELinux module
Wrap-up

Policy rules
Declarations

Constraints

Every permission request must obey all constraints currently
active in the kernel

Shouldn’t be necessary in a policy module

Since it isn’t so relevant, we’ll just take an example:

constrain process transition (u1 == u2 or t1 == privuser);

constrain process transition (r1 == r2 or t1 == privrole);

constrain dir_file_class_set { create relabelto relabelfrom }

(u1 == u2 or t1 == privowner);

There’s mlsconstraint too, which constrains MLS-related
permissions (this issue is barely documented)

Eli Billauer Breaking the Ice with SELinux

Introduction
Concepts

The nuts and bolts
Policy syntax

Writing an SELinux module
Wrap-up

Policy rules
Declarations

Declaring types

type identifier attributelist ;

This declares the type with the name identifier

The attributelist is optional.

... and the name “attribute” is a misnomer. It’s more like a
means for grouping types.

Examples:

type mytype_t;
type crond_t, domain, privuser, privrole, privfd, privowner;

Given the type declaration above, if the attribute privuser is
used where the syntax expected a type, this will include
several types, including crond t

Same goes for domain, privrole, privfd and privowner

Eli Billauer Breaking the Ice with SELinux

Introduction
Concepts

The nuts and bolts
Policy syntax

Writing an SELinux module
Wrap-up

Policy rules
Declarations

Declaring attributes and typeattribute

If you want your own attributes (in a module?) they need to
be declared:

attribute myattributename;

Also, it’s possible to give a type an attribute in a separate
statement:

typeattribute mytype t theattribute;

Eli Billauer Breaking the Ice with SELinux

Introduction
Concepts

The nuts and bolts
Policy syntax

Writing an SELinux module
Wrap-up

The basics
The module’s anatomy
Getting it all together
Some extra issues

Writing an SELinux module

Eli Billauer Breaking the Ice with SELinux

Introduction
Concepts

The nuts and bolts
Policy syntax

Writing an SELinux module
Wrap-up

The basics
The module’s anatomy
Getting it all together
Some extra issues

What an SELinux module is

Just another bunch of declarations and rules injected into the
kernel

Can be unloaded

Usually covers the security rules for a certain application

Eli Billauer Breaking the Ice with SELinux

Introduction
Concepts

The nuts and bolts
Policy syntax

Writing an SELinux module
Wrap-up

The basics
The module’s anatomy
Getting it all together
Some extra issues

A simple module generation strategy

Define a type for the application’s executable

Define another type, which will be the domain in which the
application runs

The latter type will also be used for files used by the
application

Since the process runs in a domain not defined elsewhere,
every possible access to existing objects is denied by default

Run the application while the system is run in permissive
mode. Accesses that would be denied are logged

Use audit2allow to create rules which match the denial log
messages

Tune the rules as necessary

Eli Billauer Breaking the Ice with SELinux

Introduction
Concepts

The nuts and bolts
Policy syntax

Writing an SELinux module
Wrap-up

The basics
The module’s anatomy
Getting it all together
Some extra issues

Pros and cons of this method

Pros:

Easy

Doesn’t require previous awareness of all permissions
necessary (and they are oh so many)

Tight restriction

Cons:

Covers only what the application did during the test run

Risk of inserting an unrelated rule by mistake, and opening a
security hole

Eli Billauer Breaking the Ice with SELinux

Introduction
Concepts

The nuts and bolts
Policy syntax

Writing an SELinux module
Wrap-up

The basics
The module’s anatomy
Getting it all together
Some extra issues

Getting started

Create a directory to work in

Make a symbolic link to the development makefile
ln -s /usr/share/selinux/devel/Makefile

If you don’t have that makefile, your development package
may be installed elsewhere or not at all.

Prepare an initial module source file with a .te suffix

Eli Billauer Breaking the Ice with SELinux

Introduction
Concepts

The nuts and bolts
Policy syntax

Writing an SELinux module
Wrap-up

The basics
The module’s anatomy
Getting it all together
Some extra issues

Getting started (cont.)

Open a shell window with root privileges, and follow log
messages:

tail -f /var/log/audit/audit.log | \
grep -E ’^type=(AVC|SELINUX_ERR)’

AVC messages will occur when permissions are denied

SELINUX ERR messages involve attempts to break role and
user restrictions.

In permissive mode these operation are completed anyhow

If the audit daemon is off, these messages will go to
/var/log/messages

Eli Billauer Breaking the Ice with SELinux

Introduction
Concepts

The nuts and bolts
Policy syntax

Writing an SELinux module
Wrap-up

The basics
The module’s anatomy
Getting it all together
Some extra issues

Module header

Example:

module haifux 1.0.0;

require {
type unconfined_t;
class process { transition sigchld };
class file { read x_file_perms };

}

The first line declares the module’s name and version

The require clause indicates which the types and
permissions (per class) the module expects to already exist
(prior to its loading)

Eli Billauer Breaking the Ice with SELinux

Introduction
Concepts

The nuts and bolts
Policy syntax

Writing an SELinux module
Wrap-up

The basics
The module’s anatomy
Getting it all together
Some extra issues

Required vs. defined types

We have to tell the compiler which types we define, and which
already exist.

If we use a type without defining or requiring it, we get a
compilation error like
haifux.te":24:ERROR ’unknown type haifux exec t’
at token ’;’ on line 1028

Or if a class is missing:
haifux.te":26:ERROR ’unknown class process’ at
token ’;’ on line 1030:

Or a permission is missing in the class declarations:
haifux.te":45:ERROR ’permission sigchld is not
defined for class process’ at token ’;’ on line
1049:

Eli Billauer Breaking the Ice with SELinux

Introduction
Concepts

The nuts and bolts
Policy syntax

Writing an SELinux module
Wrap-up

The basics
The module’s anatomy
Getting it all together
Some extra issues

Required vs. defined types (cont.)

On the other hand, if we required a class which doesn’t exist
(possibly because we invented it) the module’s load will fail
with something like:
libsepol.print missing requirements: haifux’s
global requirements were not met: type/attribute
haifux t

And if we defined a type which we should have required (it
already exists):
libsepol.scope copy callback: unconfined:
Duplicate declaration in module: type/attribute
unconfined t

Eli Billauer Breaking the Ice with SELinux

Introduction
Concepts

The nuts and bolts
Policy syntax

Writing an SELinux module
Wrap-up

The basics
The module’s anatomy
Getting it all together
Some extra issues

A minimal module

Let’s start with haifux.te as follows:

module haifux 1.0.0;

require {

type unconfined_t;

class process transition;

}

type haifux_t;

type haifux_exec_t;

role unconfined_r types haifux_t;

type_transition unconfined_t haifux_exec_t : process haifux_t;

Eli Billauer Breaking the Ice with SELinux

Introduction
Concepts

The nuts and bolts
Policy syntax

Writing an SELinux module
Wrap-up

The basics
The module’s anatomy
Getting it all together
Some extra issues

A minimal module (cont.)

It defines two new types, haifux t and haifux exec t.

It also tells the SELinux core, that if a process in the
unconfined t domain runs an executable of whose type is
haifux exec t, the process should continue in the haifux t
domain.

But nothing is allowed for these two types, so they are are
both completely useless.

Eli Billauer Breaking the Ice with SELinux

Introduction
Concepts

The nuts and bolts
Policy syntax

Writing an SELinux module
Wrap-up

The basics
The module’s anatomy
Getting it all together
Some extra issues

Compiling and loading

In order to compile the module, run make in the working
directory

Some files are generated (well discuss them later)

The module’s binary has a .pp suffix

In order to load the module, run make load as root. Be
patient – this can take half a minute or so.

make clean does what you’d expect

Eli Billauer Breaking the Ice with SELinux

Introduction
Concepts

The nuts and bolts
Policy syntax

Writing an SELinux module
Wrap-up

The basics
The module’s anatomy
Getting it all together
Some extra issues

Our test application

This is hello.c, which will compiled into hello

#include <stdio.h>

int main() {
printf("Hello, world\n");

return 0;
}

Sort-of explains itself, doesn’t it?

Eli Billauer Breaking the Ice with SELinux

Introduction
Concepts

The nuts and bolts
Policy syntax

Writing an SELinux module
Wrap-up

The basics
The module’s anatomy
Getting it all together
Some extra issues

Let’s try it out

[root@rouge]# setenforce 0
[root@rouge]# chcon -t haifux_exec_t hello
[root@rouge]# setenforce 1
[root@rouge]# ./hello
bash: ./hello: Permission denied
[root@rouge]# setenforce 0
[root@rouge]# ./hello
Hello, world
[root@rouge]#

Eli Billauer Breaking the Ice with SELinux

Introduction
Concepts

The nuts and bolts
Policy syntax

Writing an SELinux module
Wrap-up

The basics
The module’s anatomy
Getting it all together
Some extra issues

Remarks on the session

setenforce switches between permissive mode (value 0) and
enforced mode (value 1)

The type of hello was set with chcon, which is good enough
for trying things out

The execution of hello was denied, since we have no
permissions on its type

To get an idea of how bad things are, go
grep haifux /var/log/audit/audit.log | less

Most entries were created during permissive mode. On
enforcing mode, things stopped on the first denial.

Eli Billauer Breaking the Ice with SELinux

Introduction
Concepts

The nuts and bolts
Policy syntax

Writing an SELinux module
Wrap-up

The basics
The module’s anatomy
Getting it all together
Some extra issues

Setting the permissions straight

We start over in a new working directory

Remember to symlink to the makefile

Let audit2allow write the rules for us, based upon the
permission denials:
grep haifux /var/log/audit/audit.log | \
audit2allow -m haifux > haifux.te

Insert the type declarations from the “minimal module” into
the one generated by audit2allow and remove their
appearance in the require clause.

It’s necessary to filter relevant log entries, or the module will
open doors to anything attempted on the system

grep is a simple solution in our case

Eli Billauer Breaking the Ice with SELinux

Introduction
Concepts

The nuts and bolts
Policy syntax

Writing an SELinux module
Wrap-up

The basics
The module’s anatomy
Getting it all together
Some extra issues

Setting the permissions straight (cont.)

Review the new rules file carefully

Compile and load like before

Everything should run well now in enforcement mode

Now let’s do this on Firefox. (Hint: The application will lose
it)

To make it safer, we’ll work on a copy of the executable.

Eli Billauer Breaking the Ice with SELinux

Introduction
Concepts

The nuts and bolts
Policy syntax

Writing an SELinux module
Wrap-up

The basics
The module’s anatomy
Getting it all together
Some extra issues

Other files in the working directory

The make command created three files

haifux.pp is the module’s compiled binary

haifux.if Is generated empty, but could contain code
fragment for helping with the require clause (does it work?)

haifux.fc contains information about which files must have
what context. make install will make sure these contexts
are permanent (survive relabeling).

The .fc files resemble the format of the file context. A
typical line would be:
/home/eli/myapp.sh -- gen context(system u:object r:myapp exec t,s0)

Eli Billauer Breaking the Ice with SELinux

Introduction
Concepts

The nuts and bolts
Policy syntax

Writing an SELinux module
Wrap-up

The basics
The module’s anatomy
Getting it all together
Some extra issues

The jail effect

The process can’t escape from its domain, unless explicitly
permitted to

If we start it with a type of our own, such a permission can’t
exist without our knowledge

If the process runs another executable, it will run under the
same domain (given the permissions, execute no trans in
particular

Or we can require a transition to another domain we created

Processes in neither domains can’t touch anything unless we
explicitly permitted that

Eli Billauer Breaking the Ice with SELinux

Introduction
Concepts

The nuts and bolts
Policy syntax

Writing an SELinux module
Wrap-up

The basics
The module’s anatomy
Getting it all together
Some extra issues

Using macros

The example policies come with a lot of macros, which bundle
declarations and rules to form a group that makes sense to
humans

Some of the macros are documented in “Configuring the
SELinux policy” by the NSA and elsewhere

Automatic module generation utilities are most likely to use
macros

It’s possible that the compilation

They can be found in the policy source files

Eli Billauer Breaking the Ice with SELinux

Introduction
Concepts

The nuts and bolts
Policy syntax

Writing an SELinux module
Wrap-up

The basics
The module’s anatomy
Getting it all together
Some extra issues

Macros: The greatest hits

domain auto trans(sshd t, shell exec t, user t) –
automatic domain transition with the permissions included

file type auto trans(sshd t, tmp t, sshd tmp t) –
type transition for files, permissions included

Eli Billauer Breaking the Ice with SELinux

Introduction
Concepts

The nuts and bolts
Policy syntax

Writing an SELinux module
Wrap-up

The basics
The module’s anatomy
Getting it all together
Some extra issues

Compiling and loading without make

m4 mymodule-with-macros.te > mymodule.te (If there
are macros to open)

checkmodule -M -m mymodule.te -o mymodule.mod

semodule package -o mymodule.pp -m mymodule.mod

semodule -i mymodule.pp

The semodule command loads the module binary, and must
be run as root.

If the module is already loaded, it will be updated.

Eli Billauer Breaking the Ice with SELinux

Introduction
Concepts

The nuts and bolts
Policy syntax

Writing an SELinux module
Wrap-up

The basics
The module’s anatomy
Getting it all together
Some extra issues

Compiling and loading without make (cont)

A few remarks:

The make compilation involves stardard macros automagically

Even worse, the m4 command above does not know about
SELinux-specific macros. They are best copied into the
module itself.

Remember that a macro must be defined before (in the code)
it’s used.

Remove the module: semodule -r mymodule (as root)

Eli Billauer Breaking the Ice with SELinux

Introduction
Concepts

The nuts and bolts
Policy syntax

Writing an SELinux module
Wrap-up

Wrap-up

Eli Billauer Breaking the Ice with SELinux

Introduction
Concepts

The nuts and bolts
Policy syntax

Writing an SELinux module
Wrap-up

Random list of command-line utilities

apol, seaudit, sediffx, seaudit-report, sechecker, sediff, seinfo,
sesearch, findcon, replcon, indexcon
avcstat, getenforce, getsebool, matchpathcon, selinuxconlist,
selinuxdefcon, selinuxenabled, setenforce, togglesebool

Eli Billauer Breaking the Ice with SELinux

Introduction
Concepts

The nuts and bolts
Policy syntax

Writing an SELinux module
Wrap-up

Where to look for relevant files

/selinux

/usr/share/selinux/devel/

/etc/selinux

In the policy source bundle (which may be difficult to find)

Eli Billauer Breaking the Ice with SELinux

Introduction
Concepts

The nuts and bolts
Policy syntax

Writing an SELinux module
Wrap-up

References

Configuring the SELinux Policy (Stephen Smalley, NSA)
http://www.nsa.gov/SeLinux/papers/policy2.pdf

Security-Enhanced Linux User Guide
http://mdious.fedorapeople.org/drafts/html/index.html

Red Hat SELinux Guide
http://www.redhat.com/docs/manuals/enterprise/RHEL-4-Manual/selinux-guide/

Google is your friend

Eli Billauer Breaking the Ice with SELinux

Introduction
Concepts

The nuts and bolts
Policy syntax

Writing an SELinux module
Wrap-up

Thank you

Questions?

Eli Billauer Breaking the Ice with SELinux

	Introduction
	What SELinux is
	The goals of this lecture
	SElinux pros and cons
	Getting around

	Concepts
	The Policy
	The Context

	The nuts and bolts
	The big picture
	Misc. issues
	What makes it tick
	File labeling

	Policy syntax
	Policy rules
	Declarations

	Writing an SELinux module
	The basics
	The module's anatomy
	Getting it all together
	Some extra issues

	Wrap-up

