
Red Hat Enterprise Linux 6
Security-Enhanced Linux

User Guide

Edition 3

Red Hat Engineering Content Services

Red Hat Enterprise Linux 6 Security-Enhanced Linux 1

Legal Notice
Copyright © 2012 Red Hat, Inc.

The text of and illustrations in this document are licensed by Red Hat under a Creative Commons
Attribution–Share Alike 3.0 Unported license ("CC-BY-SA"). An explanation of CC-BY-SA is available at
http://creativecommons.org/licenses/by-sa/3.0/. In accordance with CC-BY-SA, if you distribute this
document or an adaptation of it, you must provide the URL for the original version.

Red Hat, as the licensor of this document, waives the right to enforce, and agrees not to assert, Section
4d of CC-BY-SA to the fullest extent permitted by applicable law.

Red Hat, Red Hat Enterprise Linux, the Shadowman logo, JBoss, MetaMatrix, Fedora, the Infinity Logo,
and RHCE are trademarks of Red Hat, Inc., registered in the United States and other countries.

Linux® is the registered trademark of Linus Torvalds in the United States and other countries.

Java® is a registered trademark of Oracle and/or its affiliates.

XFS® is a trademark of Silicon Graphics International Corp. or its subsidiaries in the United States
and/or other countries.

MySQL® is a registered trademark of MySQL AB in the United States, the European Union and other
countries.

All other trademarks are the property of their respective owners.

1801 Varsity Drive
Raleigh, NC 27606-2072 USA
Phone: +1 919 754 3700
Phone: 888 733 4281
Fax: +1 919 754 3701

2 Legal Notice

http://creativecommons.org/licenses/by-sa/3.0/

Abstract
This guide assists users and administrators in managing and using Security-Enhanced Linux.

Red Hat Enterprise Linux 6 Security-Enhanced Linux 3

Table of Contents
Preface

1. Document Conventions
1.1. Typographic Conventions
1.2. Pull-quote Conventions
1.3. Notes and Warnings

2. We Need Feedback!

1. Trademark Information

2. Introduction
2.1. Benefits of running SELinux
2.2. Examples
2.3. SELinux Architecture
2.4. SELinux on Other Operating Systems

3. SELinux Contexts
3.1. Domain Transitions
3.2. SELinux Contexts for Processes
3.3. SELinux Contexts for Users

4. Targeted Policy
4.1. Confined Processes
4.2. Unconfined Processes
4.3. Confined and Unconfined Users

5. Working with SELinux
5.1. SELinux Packages
5.2. Which Log File is Used
5.3. Main Configuration File
5.4. Enabling and Disabling SELinux

5.4.1. Enabling SELinux
5.4.2. Disabling SELinux

5.5. SELinux Modes
5.6. Booleans

5.6.1. Listing Booleans
5.6.2. Configuring Booleans
5.6.3. Booleans for NFS and CIFS

5.7. SELinux Contexts - Labeling Files
5.7.1. Temporary Changes: chcon
5.7.2. Persistent Changes: semanage fcontext

5.8. The file_t and default_t Types
5.9. Mounting File Systems

5.9.1. Context Mounts
5.9.2. Changing the Default Context
5.9.3. Mounting an NFS File System
5.9.4. Multiple NFS Mounts
5.9.5. Making Context Mounts Persistent

5.10. Maintaining SELinux Labels
5.10.1. Copying Files and Directories
5.10.2. Moving Files and Directories

4 Table of Contents

5.10.3. Checking the Default SELinux Context
5.10.4. Archiving Files with tar
5.10.5. Archiving Files with star

5.11. Information Gathering Tools
5.12. Multi-Level Security (MLS)

5.12.1. MLS and System Privileges
5.12.2. Enabling MLS in SELinux
5.12.3. Creating a User With a Specific MLS Range
5.12.4. Setting Up Polyinstantiated Directories

6. Confining Users
6.1. Linux and SELinux User Mappings
6.2. Confining New Linux Users: useradd
6.3. Confining Existing Linux Users: semanage login
6.4. Changing the Default Mapping
6.5. xguest: Kiosk Mode
6.6. Booleans for Users Executing Applications

7. sVirt
7.1. Security and Virtualization
7.2. sVirt Labeling

8. Troubleshooting
8.1. What Happens when Access is Denied
8.2. Top Three Causes of Problems

8.2.1. Labeling Problems
8.2.2. How are Confined Services Running?
8.2.3. Evolving Rules and Broken Applications

8.3. Fixing Problems
8.3.1. Linux Permissions
8.3.2. Possible Causes of Silent Denials
8.3.3. Manual Pages for Services
8.3.4. Permissive Domains
8.3.5. Searching For and Viewing Denials
8.3.6. Raw Audit Messages
8.3.7. sealert Messages
8.3.8. Allowing Access: audit2allow

9. Further Information
9.1. Contributors
9.2. Other Resources

A. Revision History

Red Hat Enterprise Linux 6 Security-Enhanced Linux 5

Preface
The Red Hat Enterprise Linux 6 SELinux User Guide is for people with minimal or no experience with
SELinux. Although system administration experience is not necessary, content in this guide is written for
system administration tasks. This guide provides an introduction to fundamental concepts and practical
applications of SELinux. After reading this guide you should have an intermediate understanding of
SELinux.

Thank you to everyone who offered encouragement, help, and testing - it is most appreciated. Very
special thanks to:

Dominick Grift, Stephen Smalley, and Russell Coker for their contributions, help, and patience.

1. Document Conventions
This manual uses several conventions to highlight certain words and phrases and draw attention to
specific pieces of information.

In PDF and paper editions, this manual uses typefaces drawn from the Liberation Fonts set. The
Liberation Fonts set is also used in HTML editions if the set is installed on your system. If not, alternative
but equivalent typefaces are displayed. Note: Red Hat Enterprise Linux 5 and later includes the
Liberation Fonts set by default.

1.1. Typographic Conventions

Four typographic conventions are used to call attention to specific words and phrases. These
conventions, and the circumstances they apply to, are as follows.

Mono-spaced Bold

Used to highlight system input, including shell commands, file names and paths. Also used to highlight
keycaps and key combinations. For example:

To see the contents of the file my_next_bestselling_novel in your current working
directory, enter the cat my_next_bestselling_novel command at the shell prompt
and press Enter to execute the command.

The above includes a file name, a shell command and a keycap, all presented in mono-spaced bold and
all distinguishable thanks to context.

Key combinations can be distinguished from keycaps by the plus sign that connects each part of a key
combination. For example:

Press Enter to execute the command.

Press Ctrl+Alt+F2 to switch to a virtual terminal.

The first paragraph highlights the particular keycap to press. The second highlights two key
combinations (each a set of three keycaps with each set pressed simultaneously).

If source code is discussed, class names, methods, functions, variable names and returned values
mentioned within a paragraph will be presented as above, in mono-spaced bold. For example:

File-related classes include filesystem for file systems, file for files, and dir for
directories. Each class has its own associated set of permissions.

Proportional Bold

6 Preface

https://fedorahosted.org/liberation-fonts/

This denotes words or phrases encountered on a system, including application names; dialog box text;
labeled buttons; check-box and radio button labels; menu titles and sub-menu titles. For example:

Choose System → Preferences → Mouse from the main menu bar to launch Mouse
Preferences. In the Buttons tab, click the Left-handed mouse check box and click
Close to switch the primary mouse button from the left to the right (making the mouse
suitable for use in the left hand).

To insert a special character into a gedit file, choose Applications → Accessories →
Character Map from the main menu bar. Next, choose Search → Find… from the
Character Map menu bar, type the name of the character in the Search field and click
Next. The character you sought will be highlighted in the Character Table. Double-click
this highlighted character to place it in the Text to copy field and then click the Copy
button. Now switch back to your document and choose Edit → Paste from the gedit menu
bar.

The above text includes application names; system-wide menu names and items; application-specific
menu names; and buttons and text found within a GUI interface, all presented in proportional bold and all
distinguishable by context.

Mono-spaced Bold Italic or Proportional Bold Italic

Whether mono-spaced bold or proportional bold, the addition of italics indicates replaceable or variable
text. Italics denotes text you do not input literally or displayed text that changes depending on
circumstance. For example:

To connect to a remote machine using ssh, type ssh username@domain.name at a shell
prompt. If the remote machine is example.com and your username on that machine is
john, type ssh john@example.com .

The mount -o remount file-system command remounts the named file system. For
example, to remount the /home file system, the command is mount -o remount /home.

To see the version of a currently installed package, use the rpm -q package command. It
will return a result as follows: package-version-release.

Note the words in bold italics above — username, domain.name, file-system, package, version and
release. Each word is a placeholder, either for text you enter when issuing a command or for text
displayed by the system.

Aside from standard usage for presenting the title of a work, italics denotes the first use of a new and
important term. For example:

Publican is a DocBook publishing system.

1.2. Pull-quote Conventions

Terminal output and source code listings are set off visually from the surrounding text.

Output sent to a terminal is set in mono-spaced roman and presented thus:

books Desktop documentation drafts mss photos stuff svn
books_tests Desktop1 downloads images notes scripts svgs

Source-code listings are also set in mono-spaced roman but add syntax highlighting as follows:

Red Hat Enterprise Linux 6 Security-Enhanced Linux 7

package org.jboss.book.jca.ex1;

import javax.naming.InitialContext;

public class ExClient
{
 public static void main(String args[])
 throws Exception
 {
 InitialContext iniCtx = new InitialContext();
 Object ref = iniCtx.lookup("EchoBean");
 EchoHome home = (EchoHome) ref;
 Echo echo = home.create();

 System.out.println("Created Echo");

 System.out.println("Echo.echo('Hello') = " + echo.echo("Hello"));
 }
}

1.3. Notes and Warnings

Finally, we use three visual styles to draw attention to information that might otherwise be overlooked.

Note

Notes are tips, shortcuts or alternative approaches to the task at hand. Ignoring a note should
have no negative consequences, but you might miss out on a trick that makes your life easier.

Important

Important boxes detail things that are easily missed: configuration changes that only apply to the
current session, or services that need restarting before an update will apply. Ignoring a box
labeled 'Important' will not cause data loss but may cause irritation and frustration.

Warning

Warnings should not be ignored. Ignoring warnings will most likely cause data loss.

2. We Need Feedback!
If you find a typographical error in this manual, or if you have thought of a way to make this manual
better, we would love to hear from you! Please submit a report in Bugzilla: http://bugzilla.redhat.com/
against the product Red Hat Enterprise Linux.

When submitting a bug report, be sure to mention the manual's identifier: doc-SELinux_User_Guide and
version number: 6.

If you have a suggestion for improving the documentation, try to be as specific as possible when
describing it. If you have found an error, please include the section number and some of the surrounding
text so we can find it easily.

8 Preface

http://bugzilla.redhat.com/

Red Hat Enterprise Linux 6 Security-Enhanced Linux 9

Chapter 1. Trademark Information
Linux is the registered trademark of Linus Torvalds in the U.S. and other countries.

UNIX is a registered trademark of The Open Group.

Type Enforcement is a trademark of Secure Computing, LLC, a wholly owned subsidiary of McAfee, Inc.,
registered in the U.S. and in other countries. Neither McAfee nor Secure Computing, LLC, has consented
to the use or reference to this trademark by the author outside of this guide.

Apache is a trademark of The Apache Software Foundation.

MySQL is a trademark or registered trademark of MySQL AB in the U.S. and other countries.

Other products mentioned may be trademarks of their respective corporations.

10 Chapter 1. Trademark Information

Chapter 2. Introduction
Security-Enhanced Linux (SELinux) is an implementation of a mandatory access control mechanism in
the Linux kernel, checking for allowed operations after standard discretionary access controls are
checked. It was created by the National Security Agency and can enforce rules on files and processes in
a Linux system, and on their actions, based on defined policies.

When using SELinux, files, including directories and devices, are referred to as objects. Processes, such
as a user running a command or the Mozilla Firefox application, are referred to as subjects. Most
operating systems use a Discretionary Access Control (DAC) system that controls how subjects interact
with objects, and how subjects interact with each other. On operating systems using DAC, users control
the permissions of files (objects) that they own. For example, on Linux operating systems, users could
make their home directories world-readable, giving users and processes (subjects) access to potentially
sensitive information, with no further protection over this unwanted action.

Relying on DAC mechanisms alone is fundamentally inadequate for strong system security. DAC access
decisions are only based on user identity and ownership, ignoring other security-relevant information
such as the role of the user, the function and trustworthiness of the program, and the sensitivity and
integrity of the data. Each user typically has complete discretion over their files, making it difficult to
enforce a system-wide security policy. Furthermore, every program run by a user inherits all of the
permissions granted to the user and is free to change access to the user's files, so minimal protection is
provided against malicious software. Many system services and privileged programs run with coarse-
grained privileges that far exceed their requirements, so that a flaw in any one of these programs could

be exploited to obtain further system access.[]

The following is an example of permissions used on Linux operating systems that do not run Security-
Enhanced Linux (SELinux). The permissions and output in these examples may differ slightly from your
system. Use the ls -l command to view file permissions:

~]$ ls -l file1
-rwxrw-r-- 1 user1 group1 0 2009-08-30 11:03 file1

In this example, the first three permission bits, rwx, control the access the Linux user1 user (in this
case, the owner) has to file1. The next three permission bits, rw-, control the access the Linux
group1 group has to file1. The last three permission bits, r--, control the access everyone else has
to file1, which includes all users and processes.

Security-Enhanced Linux (SELinux) adds Mandatory Access Control (MAC) to the Linux kernel, and is
enabled by default in Red Hat Enterprise Linux. A general purpose MAC architecture needs the ability to
enforce an administratively-set security policy over all processes and files in the system, basing
decisions on labels containing a variety of security-relevant information. When properly implemented, it
enables a system to adequately defend itself and offers critical support for application security by
protecting against the tampering with, and bypassing of, secured applications. MAC provides strong
separation of applications that permits the safe execution of untrustworthy applications. Its ability to limit
the privileges associated with executing processes limits the scope of potential damage that can result
from the exploitation of vulnerabilities in applications and system services. MAC enables information to
be protected from legitimate users with limited authorization as well as from authorized users who have

unwittingly executed malicious applications.[]

The following is an example of the labels containing security-relevant information that are used on
processes, Linux users, and files, on Linux operating systems that run SELinux. This information is
called the SELinux context, and is viewed using the ls -Z command:

~]$ ls -Z file1
-rwxrw-r-- user1 group1 unconfined_u:object_r:user_home_t:s0 file1

1

2

Red Hat Enterprise Linux 6 Security-Enhanced Linux 11

In this example, SELinux provides a user (unconfined_u), a role (object_r), a type (user_home_t),
and a level (s0). This information is used to make access control decisions. With DAC, access is
controlled based only on Linux user and group IDs. It is important to remember that SELinux policy rules
are checked after DAC rules. SELinux policy rules are not used if DAC rules deny access first.

Linux and SELinux Users

On Linux operating systems that run SELinux, there are Linux users as well as SELinux users.
SELinux users are part of SELinux policy. Linux users are mapped to SELinux users. To avoid
confusion, this guide uses “Linux user” and “SELinux user” to differentiate between the two.

2.1. Benefits of running SELinux
All processes and files are labeled with a type. A type defines a domain for processes, and a type for
files. Processes are separated from each other by running in their own domains, and SELinux policy
rules define how processes interact with files, as well as how processes interact with each other.
Access is only allowed if an SELinux policy rule exists that specifically allows it.

Fine-grained access control. Stepping beyond traditional UNIX permissions that are controlled at
user discretion and based on Linux user and group IDs, SELinux access decisions are based on all
available information, such as an SELinux user, role, type, and, optionally, a level.

SELinux policy is administratively-defined, enforced system-wide, and is not set at user discretion.

Reduced vulnerability to privilege escalation attacks. One example: since processes run in domains,
and are therefore separated from each other, and because SELinux policy rules define how
processes access files and other processes, if a process is compromised, the attacker only has
access to the normal functions of that process, and to files the process has been configured to have
access to. For example, if the Apache HTTP Server is compromised, an attacker can not use that
process to read files in user home directories, unless a specific SELinux policy rule was added or
configured to allow such access.

SELinux can be used to enforce data confidentiality and integrity, as well as protecting processes
from untrusted inputs.

However, SELinux is not:

antivirus software,

a replacement for passwords, firewalls, or other security systems,

an all-in-one security solution.

SELinux is designed to enhance existing security solutions, not replace them. Even when running
SELinux, it is important to continue to follow good security practices, such as keeping software up-to-
date, using hard-to-guess passwords, firewalls, and so on.

2.2. Examples
The following examples demonstrate how SELinux increases security:

The default action is deny. If an SELinux policy rule does not exist to allow access, such as for a
process opening a file, access is denied.

SELinux can confine Linux users. A number of confined SELinux users exist in SELinux policy. Linux
users can be mapped to confined SELinux users to take advantage of the security rules and
mechanisms applied to them. For example, mapping a Linux user to the SELinux user_u user, results
in a Linux user that is not able to run (unless configured otherwise) set user ID (setuid) applications,

12 Chapter 2. Introduction

such as sudo and su, as well as preventing them from executing files and applications in their home
directory - if configured, this prevents users from executing malicious files from their home
directories.

Process separation is used. Processes run in their own domains, preventing processes from
accessing files used by other processes, as well as preventing processes from accessing other
processes. For example, when running SELinux, unless otherwise configured, an attacker can not
compromise a Samba server, and then use that Samba server as an attack vector to read and write
to files used by other processes, such as databases used by MySQL.

SELinux helps limit the damage made by configuration mistakes. Domain Name System (DNS)
servers often replicate information between each other in what is known as a zone transfer.
Attackers can use zone transfers to update DNS servers with false information. When running the
Berkeley Internet Name Domain (BIND) as a DNS server in Red Hat Enterprise Linux, even if an
administrator forgets to limit which servers can perform a zone transfer, the default SELinux policy

prevents zone files [] from being updated via zone transfers, by the BIND named daemon itself, and
by other processes.

Refer to the Red Hat Magazine article, Risk report: Three years of Red Hat Enterprise Linux 4 [], for
exploits that were restricted due to the default SELinux targeted policy in Red Hat Enterprise Linux 4.

Refer to the LinuxWorld.com article, A seatbelt for server software: SELinux blocks real-world

exploits [], for background information about SELinux, and information about various exploits that
SELinux has prevented.

Refer to James Morris's SELinux mitigates remote root vulnerability in OpenPegasus blog post for
information about an exploit in OpenPegasus that was mitigated by SELinux as shipped with Red Hat
Enterprise Linux 4 and 5.

2.3. SELinux Architecture
SELinux is a Linux security module that is built into the Linux kernel. SELinux is driven by loadable policy
rules. When security-relevant access is taking place, such as when a process attempts to open a file,
the operation is intercepted in the kernel by SELinux. If an SELinux policy rule allows the operation, it
continues, otherwise, the operation is blocked and the process receives an error.

SELinux decisions, such as allowing or disallowing access, are cached. This cache is known as the
Access Vector Cache (AVC). Caching decisions decrease how often SELinux policy rules need to be
checked, which increases performance. Remember that SELinux policy rules have no effect if DAC rules
deny access first.

2.4. SELinux on Other Operating Systems
Refer to the following for information about running SELinux on other Linux distributions:

Fedora: http://fedoraproject.org/wiki/SELinux and the Fedora SELinux FAQ.

Hardened Gentoo: http://www.gentoo.org/proj/en/hardened/selinux/selinux-handbook.xml.

Debian: http://wiki.debian.org/SELinux.

Ubuntu: https://wiki.ubuntu.com/SELinux and https://help.ubuntu.com/community/SELinux.

3

4

5

" Integ rating Flexib le Sup p o rt fo r Security Po lic ies into the Linux Op erating System" , b y Peter Lo sco cco and Step hen Smalley.
This p ap er was o rig inally p rep ared fo r the Natio nal Security Ag ency and is , co nseq uently, in the p ub lic d o main. Refer to the
o rig inal p ap er fo r d etails and the d o cument as it was firs t released . Any ed its and chang es were d o ne b y Murray McAllis ter.

[1]

" Meeting Critical Security Ob jectives with Security-Enhanced Linux" , b y Peter Lo sco cco and Step hen Smalley. This p ap er was
o rig inally p rep ared fo r the Natio nal Security Ag ency and is , co nseq uently, in the p ub lic d o main. Refer to the o rig inal p ap er fo r
d etails and the d o cument as it was firs t released . Any ed its and chang es were d o ne b y Murray McAllis ter.

[2]

Red Hat Enterprise Linux 6 Security-Enhanced Linux 13

http://www.redhatmagazine.com/
http://www.redhatmagazine.com/2008/02/26/risk-report-three-years-of-red-hat-enterprise-linux-4/
http://www.linuxworld.com
http://www.linuxworld.com/news/2008/022408-selinux.html?page=1
http://james-morris.livejournal.com/25421.html
http://www.openpegasus.org/
http://fedoraproject.org/wiki/SELinux
http://docs.fedoraproject.org/selinux-faq/
http://www.gentoo.org/proj/en/hardened/selinux/selinux-handbook.xml
http://wiki.debian.org/SELinux
https://wiki.ubuntu.com/SELinux
https://help.ubuntu.com/community/SELinux
http://www.nsa.gov/research/_files/selinux/papers/freenix01/index.shtml
http://www.nsa.gov/research/_files/selinux/papers/ottawa01/index.shtml

Text fi les that inc lud e info rmatio n, such as ho stname to IP ad d ress map p ing s, that are used b y DNS servers.[3]

Co x, Mark. " Risk rep o rt: Three years o f Red Hat Enterp rise Linux 4" . Pub lished 26 Feb ruary 20 0 8 . Accessed 27 Aug ust 20 0 9 :
http ://www.red hatmag azine.co m/20 0 8 /0 2/26 /risk-rep o rt-three-years-o f-red -hat-enterp rise-l inux-4/.

[4]

Marti, Do n. " A seatb elt fo r server so ftware: SELinux b lo cks real-wo rld exp lo its" . Pub lished 24 Feb ruary 20 0 8 . Accessed 27
Aug ust 20 0 9 : http ://www.linuxwo rld .co m/news/20 0 8 /0 2240 8 -selinux.html?p ag e=1.

[5]

14 Chapter 2. Introduction

http://www.redhatmagazine.com/2008/02/26/risk-report-three-years-of-red-hat-enterprise-linux-4/
http://www.linuxworld.com/news/2008/022408-selinux.html?page=1

Chapter 3. SELinux Contexts
Processes and files are labeled with an SELinux context that contains additional information, such as an
SELinux user, role, type, and, optionally, a level. When running SELinux, all of this information is used to
make access control decisions. In Red Hat Enterprise Linux, SELinux provides a combination of Role-
Based Access Control (RBAC), Type Enforcement (TE), and, optionally, Multi-Level Security (MLS).

The following is an example showing SELinux context. SELinux contexts are used on processes, Linux
users, and files, on Linux operating systems that run SELinux. Use the ls -Z command to view the
SELinux context of files and directories:

~]$ ls -Z file1
-rwxrw-r-- user1 group1 unconfined_u:object_r:user_home_t:s0 file1

SELinux contexts follow the SELinux user:role:type:level syntax. The fields are as follows:

SELinux user

The SELinux user identity is an identity known to the policy that is authorized for a specific set
of roles, and for a specific MLS/MCS range. Each Linux user is mapped to an SELinux user via
SELinux policy. This allows Linux users to inherit the restrictions placed on SELinux users. The
mapped SELinux user identity is used in the SELinux context for processes in that session, in
order to define what roles and levels they can enter. Run the semanage login -l command
as the Linux root user to view a list of mappings between SELinux and Linux user accounts (you
need to have the policycoreutils-python package installed):

~]# semanage login -l

Login Name SELinux User MLS/MCS Range

__default__ unconfined_u s0-s0:c0.c1023
root unconfined_u s0-s0:c0.c1023
system_u system_u s0-s0:c0.c1023

Output may differ slightly from system to system. The Login Name column lists Linux users,
and the SELinux User column lists which SELinux user the Linux user is mapped to. For
processes, the SELinux user limits which roles and levels are accessible. The last column,
MLS/MCS Range, is the level used by Multi-Level Security (MLS) and Multi-Category Security
(MCS).

role

Part of SELinux is the Role-Based Access Control (RBAC) security model. The role is an
attribute of RBAC. SELinux users are authorized for roles, and roles are authorized for
domains. The role serves as an intermediary between domains and SELinux users. The roles
that can be entered determine which domains can be entered - ultimately, this controls which
object types can be accessed. This helps reduce vulnerability to privilege escalation attacks.

type

The type is an attribute of Type Enforcement. The type defines a domain for processes, and a
type for files. SELinux policy rules define how types can access each other, whether it be a
domain accessing a type, or a domain accessing another domain. Access is only allowed if a
specific SELinux policy rule exists that allows it.

Red Hat Enterprise Linux 6 Security-Enhanced Linux 15

level

The level is an attribute of MLS and MCS. An MLS range is a pair of levels, written as lowlevel-
highlevel if the levels differ, or lowlevel if the levels are identical (s0-s0 is the same as s0).
Each level is a sensitivity-category pair, with categories being optional. If there are categories,
the level is written as sensitivity:category-set. If there are no categories, it is written as
sensitivity.

If the category set is a contiguous series, it can be abbreviated. For example, c0.c3 is the
same as c0,c1,c2,c3. The /etc/selinux/targeted/setrans.conf file maps levels
(s0:c0) to human-readable form (ie. CompanyConfidential). Do not edit setrans.conf
with a text editor: use semanage to make changes. Refer to the semanage(8) manual page for
further information. In Red Hat Enterprise Linux, targeted policy enforces MCS, and in MCS,
there is just one sensitivity, s0. MCS in Red Hat Enterprise Linux supports 1024 different
categories: c0 through to c1023. s0-s0:c0.c1023 is sensitivity s0 and authorized for all
categories.

MLS enforces the Bell-La Padula Mandatory Access Model, and is used in Labeled Security
Protection Profile (LSPP) environments. To use MLS restrictions, install the selinux-policy-mls
package, and configure MLS to be the default SELinux policy. The MLS policy shipped with Red
Hat Enterprise Linux omits many program domains that were not part of the evaluated
configuration, and therefore, MLS on a desktop workstation is unusable (no support for the X
Window System); however, an MLS policy from the upstream SELinux Reference Policy can be
built that includes all program domains. For more information on MLS configuration, refer to
Section 5.12, “Multi-Level Security (MLS)”.

3.1. Domain Transitions
A process in one domain transitions to another domain by executing an application that has the
entrypoint type for the new domain. The entrypoint permission is used in SELinux policy, and
controls which applications can be used to enter a domain. The following example demonstrates a
domain transition:

1. A user wants to change their password. To do this, they run the passwd application. The
/usr/bin/passwd executable is labeled with the passwd_exec_t type:

~]$ ls -Z /usr/bin/passwd
-rwsr-xr-x root root system_u:object_r:passwd_exec_t:s0 /usr/bin/passwd

The passwd application accesses /etc/shadow, which is labeled with the shadow_t type:

~]$ ls -Z /etc/shadow
-r--------. root root system_u:object_r:shadow_t:s0 /etc/shadow

2. An SELinux policy rule states that processes running in the passwd_t domain are allowed to read
and write to files labeled with the shadow_t type. The shadow_t type is only applied to files that
are required for a password change. This includes /etc/gshadow, /etc/shadow, and their
backup files.

3. An SELinux policy rule states that the passwd_t domain has entrypoint permission to the
passwd_exec_t type.

4. When a user runs the passwd application, the user's shell process transitions to the passwd_t
domain. With SELinux, since the default action is to deny, and a rule exists that allows (among
other things) applications running in the passwd_t domain to access files labeled with the

16 Chapter 3. SELinux Contexts

http://oss.tresys.com/projects/refpolicy

shadow_t type, the passwd application is allowed to access /etc/shadow, and update the
user's password.

This example is not exhaustive, and is used as a basic example to explain domain transition. Although
there is an actual rule that allows subjects running in the passwd_t domain to access objects labeled
with the shadow_t file type, other SELinux policy rules must be met before the subject can transition to a
new domain. In this example, Type Enforcement ensures:

The passwd_t domain can only be entered by executing an application labeled with the
passwd_exec_t type; can only execute from authorized shared libraries, such as the lib_t type;
and can not execute any other applications.

Only authorized domains, such as passwd_t, can write to files labeled with the shadow_t type.
Even if other processes are running with superuser privileges, those processes can not write to files
labeled with the shadow_t type, as they are not running in the passwd_t domain.

Only authorized domains can transition to the passwd_t domain. For example, the sendmail
process running in the sendmail_t domain does not have a legitimate reason to execute passwd;
therefore, it can never transition to the passwd_t domain.

Processes running in the passwd_t domain can only read and write to authorized types, such as
files labeled with the etc_t or shadow_t types. This prevents the passwd application from being
tricked into reading or writing arbitrary files.

3.2. SELinux Contexts for Processes
Use the ps -eZ command to view the SELinux context for processes. For example:

1. Open a terminal, such as Applications → System Tools → Terminal.
2. Run the passwd command. Do not enter a new password.

3. Open a new tab, or another terminal, and run the ps -eZ | grep passwd command. The output
is similar to the following:

unconfined_u:unconfined_r:passwd_t:s0-s0:c0.c1023 13212 pts/1 00:00:00 passwd

4. In the first tab/terminal, press Ctrl+C to cancel the passwd application.

In this example, when the passwd application (labeled with the passwd_exec_t type) is executed, the
user's shell process transitions to the passwd_t domain. Remember: the type defines a domain for
processes, and a type for files.

Use the ps -eZ command to view the SELinux contexts for running processes. The following is a
truncated example of the output, and may differ on your system:

system_u:system_r:dhcpc_t:s0 1869 ? 00:00:00 dhclient
system_u:system_r:sshd_t:s0-s0:c0.c1023 1882 ? 00:00:00 sshd
system_u:system_r:gpm_t:s0 1964 ? 00:00:00 gpm
system_u:system_r:crond_t:s0-s0:c0.c1023 1973 ? 00:00:00 crond
system_u:system_r:kerneloops_t:s0 1983 ? 00:00:05 kerneloops
system_u:system_r:crond_t:s0-s0:c0.c1023 1991 ? 00:00:00 atd

The system_r role is used for system processes, such as daemons. Type Enforcement then
separates each domain.

3.3. SELinux Contexts for Users

Red Hat Enterprise Linux 6 Security-Enhanced Linux 17

Use the id -Z command to view the SELinux context associated with your Linux user:

unconfined_u:unconfined_r:unconfined_t:s0-s0:c0.c1023

In Red Hat Enterprise Linux, Linux users run unconfined by default. This SELinux context shows that the
Linux user is mapped to the SELinux unconfined_u user, running as the unconfined_r role, and is
running in the unconfined_t domain. s0-s0 is an MLS range, which in this case, is the same as just
s0. The categories the user has access to is defined by c0.c1023, which is all categories (c0 through
to c1023).

18 Chapter 3. SELinux Contexts

Chapter 4. Targeted Policy
Targeted policy is the default SELinux policy used in Red Hat Enterprise Linux. When using targeted
policy, processes that are targeted run in a confined domain, and processes that are not targeted run in
an unconfined domain. For example, by default, logged in users run in the unconfined_t domain, and
system processes started by init run in the initrc_t domain - both of these domains are unconfined.

Unconfined domains (as well as confined domains) are subject to executable and writeable memory
checks. By default, subjects running in an unconfined domain can not allocate writeable memory and
execute it. This reduces vulnerability to buffer overflow attacks. These memory checks are disabled by
setting Booleans, which allow the SELinux policy to be modified at runtime. Boolean configuration is
discussed later.

4.1. Confined Processes
Almost every service that listens on a network, such as sshd or httpd, is confined in Red Hat
Enterprise Linux. Also, most processes that run as the Linux root user and perform tasks for users, such
as the passwd application, are confined. When a process is confined, it runs in its own domain, such as
the httpd process running in the httpd_t domain. If a confined process is compromised by an
attacker, depending on SELinux policy configuration, an attacker's access to resources and the possible
damage they can do is limited.

The following example demonstrates how SELinux prevents the Apache HTTP Server (httpd) from
reading files that are not correctly labeled, such as files intended for use by Samba. This is an example,
and should not be used in production. It assumes that the httpd and wget packages are installed, the
SELinux targeted policy is used, and that SELinux is running in enforcing mode:

1. Run the sestatus command to confirm that SELinux is enabled, is running in enforcing mode, and
that targeted policy is being used:

~]$ sestatus
SELinux status: enabled
SELinuxfs mount: /selinux
Current mode: enforcing
Mode from config file: enforcing
Policy version: 24
Policy from config file: targeted

SELinux status: enabled is returned when SELinux is enabled. Current mode:
enforcing is returned when SELinux is running in enforcing mode. Policy from config
file: targeted is returned when the SELinux targeted policy is used.

2. As the Linux root user, run the touch /var/www/html/testfile command to create a file.

3. Run the ls -Z /var/www/html/testfile command to view the SELinux context:

-rw-r--r-- root root unconfined_u:object_r:httpd_sys_content_t:s0
/var/www/html/testfile

By default, Linux users run unconfined in Red Hat Enterprise Linux, which is why the testfile
file is labeled with the SELinux unconfined_u user. RBAC is used for processes, not files. Roles
do not have a meaning for files - the object_r role is a generic role used for files (on persistent
storage and network file systems). Under the /proc/ directory, files related to processes may

use the system_r role.[] The httpd_sys_content_t type allows the httpd process to
access this file.

4. As the Linux root user, run the service httpd start command to start the httpd process.

6

Red Hat Enterprise Linux 6 Security-Enhanced Linux 19

The output is as follows if httpd starts successfully:

~]# service httpd start
Starting httpd: [OK]

5. Change into a directory where your Linux user has write access to, and run the wget
http://localhost/testfile command. Unless there are changes to the default
configuration, this command succeeds:

~]$ wget http://localhost/test2file
--2009-11-06 17:43:01-- http://localhost/testfile
Resolving localhost... 127.0.0.1
Connecting to localhost|127.0.0.1|:80... connected.
HTTP request sent, awaiting response... 200 OK
Length: 0 [text/plain]
Saving to: `testfile'

[<=>] 0 --.-K/s in 0s

2009-11-06 17:43:01 (0.00 B/s) - `testfile' saved [0/0]

6. The chcon command relabels files; however, such label changes do not survive when the file
system is relabeled. For permanent changes that survive a file system relabel, use the semanage
command, which is discussed later. As the Linux root user, run the following command to change
the type to a type used by Samba:

~]# chcon -t samba_share_t /var/www/html/testfile

Run the ls -Z /var/www/html/testfile command to view the changes:

-rw-r--r-- root root unconfined_u:object_r:samba_share_t:s0
/var/www/html/testfile

7. Note: the current DAC permissions allow the httpd process access to testfile. Change into a
directory where your Linux user has write access to, and run the wget
http://localhost/testfile command. Unless there are changes to the default
configuration, this command fails:

~]$ wget http://localhost/test2file
--2009-11-06 14:11:23-- http://localhost/testfile
Resolving localhost... 127.0.0.1
Connecting to localhost|127.0.0.1|:80... connected.
HTTP request sent, awaiting response... 403 Forbidden
2009-11-06 14:11:23 ERROR 403: Forbidden.

8. As the Linux root user, run the rm -i /var/www/html/testfile command to remove
testfile.

9. If you do not require httpd to be running, as the Linux root user, run the service httpd stop
command to stop httpd:

~]# service httpd stop
Stopping httpd: [OK]

This example demonstrates the additional security added by SELinux. Although DAC rules allowed the
httpd process access to testfile in step 7, because the file was labeled with a type that the httpd
process does not have access to, SELinux denied access.

20 Chapter 4. Targeted Policy

An error similar to the following is logged to /var/log/audit/audit.log:

type=AVC msg=audit(1220706212.937:70): avc: denied { getattr } for pid=1904
comm="httpd" path="/var/www/html/testfile" dev=sda5 ino=247576
scontext=unconfined_u:system_r:httpd_t:s0
tcontext=unconfined_u:object_r:samba_share_t:s0 tclass=file

type=SYSCALL msg=audit(1220706212.937:70): arch=40000003 syscall=196 success=no
exit=-13 a0=b9e21da0 a1=bf9581dc a2=555ff4 a3=2008171 items=0 ppid=1902 pid=1904
auid=500 uid=48 gid=48 euid=48 suid=48 fsuid=48 egid=48 sgid=48 fsgid=48
tty=(none) ses=1 comm="httpd" exe="/usr/sbin/httpd"
subj=unconfined_u:system_r:httpd_t:s0 key=(null)

Also, an error similar to the following is logged to /var/log/httpd/error_log:

[Wed May 06 23:00:54 2009] [error] [client 127.0.0.1] (13)Permission denied:
access to /testfile denied

4.2. Unconfined Processes
Unconfined processes run in unconfined domains, for example, init programs run in the unconfined
initrc_t domain, unconfined kernel processes run in the kernel_t domain, and unconfined Linux
users run in the unconfined_t domain. For unconfined processes, SELinux policy rules are applied,
but policy rules exist that allow processes running in unconfined domains almost all access. Processes
running in unconfined domains fall back to using DAC rules exclusively. If an unconfined process is
compromised, SELinux does not prevent an attacker from gaining access to system resources and data,
but of course, DAC rules are still used. SELinux is a security enhancement on top of DAC rules - it does
not replace them.

The following example demonstrates how the Apache HTTP Server (httpd) can access data intended
for use by Samba, when running unconfined. Note: in Red Hat Enterprise Linux, the httpd process runs
in the confined httpd_t domain by default. This is an example, and should not be used in production. It
assumes that the httpd, wget, dbus and audit packages are installed, that the SELinux targeted policy is
used, and that SELinux is running in enforcing mode:

1. Run the sestatus command to confirm that SELinux is enabled, is running in enforcing mode, and
that targeted policy is being used:

~]$ sestatus
SELinux status: enabled
SELinuxfs mount: /selinux
Current mode: enforcing
Mode from config file: enforcing
Policy version: 24
Policy from config file: targeted

SELinux status: enabled is returned when SELinux is enabled. Current mode:
enforcing is returned when SELinux is running in enforcing mode. Policy from config
file: targeted is returned when the SELinux targeted policy is used.

2. As the Linux root user, run the touch /var/www/html/test2file command to create a file.

3. Run the ls -Z /var/www/html/test2file command to view the SELinux context:

~]$ ls -Z /var/www/html/test2file
-rw-r--r-- root root unconfined_u:object_r:httpd_sys_content_t:s0
/var/www/html/test2file

Red Hat Enterprise Linux 6 Security-Enhanced Linux 21

By default, Linux users run unconfined in Red Hat Enterprise Linux, which is why the test2file
file is labeled with the SELinux unconfined_u user. RBAC is used for processes, not files. Roles
do not have a meaning for files - the object_r role is a generic role used for files (on persistent
storage and network file systems). Under the /proc/ directory, files related to processes may

use the system_r role.[] The httpd_sys_content_t type allows the httpd process to
access this file.

4. The chcon command relabels files; however, such label changes do not survive when the file
system is relabeled. For permanent changes that survive a file system relabel, use the semanage
command, which is discussed later. As the Linux root user, run the following command to change
the type to a type used by Samba:

~]# chcon -t samba_share_t /var/www/html/test2file

Run the ls -Z /var/www/html/test2file command to view the changes:

~]$ ls -Z /var/www/html/test2file
-rw-r--r-- root root unconfined_u:object_r:samba_share_t:s0
/var/www/html/test2file

5. Run the service httpd status command to confirm that the httpd process is not running:

~]$ service httpd status
httpd is stopped

If the output differs, run the service httpd stop command as the Linux root user to stop the
httpd process:

~]# service httpd stop
Stopping httpd: [OK]

6. To make the httpd process run unconfined, run the following command as the Linux root user to
change the type of /usr/sbin/httpd, to a type that does not transition to a confined domain:

~]# chcon -t unconfined_exec_t /usr/sbin/httpd

7. Run the ls -Z /usr/sbin/httpd command to confirm that /usr/sbin/httpd is labeled with
the unconfined_exec_t type:

~]$ ls -Z /usr/sbin/httpd
-rwxr-xr-x root root system_u:object_r:unconfined_exec_t:s0 /usr/sbin/httpd

8. As the Linux root user, run the service httpd start command to start the httpd process.
The output is as follows if httpd starts successfully:

~]# service httpd start
Starting httpd: [OK]

9. Run the ps -eZ | grep httpd command to view the httpd running in the unconfined_t
domain:

7

22 Chapter 4. Targeted Policy

~]$ ps -eZ | grep httpd
unconfined_u:unconfined_r:unconfined_t:s0 7721 ? 00:00:00 httpd
unconfined_u:unconfined_r:unconfined_t:s0 7723 ? 00:00:00 httpd
unconfined_u:unconfined_r:unconfined_t:s0 7724 ? 00:00:00 httpd
unconfined_u:unconfined_r:unconfined_t:s0 7725 ? 00:00:00 httpd
unconfined_u:unconfined_r:unconfined_t:s0 7726 ? 00:00:00 httpd
unconfined_u:unconfined_r:unconfined_t:s0 7727 ? 00:00:00 httpd
unconfined_u:unconfined_r:unconfined_t:s0 7728 ? 00:00:00 httpd
unconfined_u:unconfined_r:unconfined_t:s0 7729 ? 00:00:00 httpd
unconfined_u:unconfined_r:unconfined_t:s0 7730 ? 00:00:00 httpd

10. Change into a directory where your Linux user has write access to, and run the wget
http://localhost/test2file command. Unless there are changes to the default
configuration, this command succeeds:

~]$ wget http://localhost/test2file
--2009-05-07 01:41:10-- http://localhost/test2file
Resolving localhost... 127.0.0.1
Connecting to localhost|127.0.0.1|:80... connected.
HTTP request sent, awaiting response... 200 OK
Length: 0 [text/plain]
Saving to: `test2file.1'

[<=>]--.-K/s in 0s

2009-05-07 01:41:10 (0.00 B/s) - `test2file.1' saved [0/0]

Although the httpd process does not have access to files labeled with the samba_share_t
type, httpd is running in the unconfined unconfined_t domain, and falls back to using DAC
rules, and as such, the wget command succeeds. Had httpd been running in the confined
httpd_t domain, the wget command would have failed.

11. The restorecon command restores the default SELinux context for files. As the Linux root user,
run the restorecon -v /usr/sbin/httpd command to restore the default SELinux context for
/usr/sbin/httpd:

~]# restorecon -v /usr/sbin/httpd
restorecon reset /usr/sbin/httpd context
system_u:object_r:unconfined_exec_t:s0->system_u:object_r:httpd_exec_t:s0

Run the ls -Z /usr/sbin/httpd command to confirm that /usr/sbin/httpd is labeled with
the httpd_exec_t type:

~]$ ls -Z /usr/sbin/httpd
-rwxr-xr-x root root system_u:object_r:httpd_exec_t:s0 /usr/sbin/httpd

12. As the Linux root user, run the service httpd restart command to restart httpd. After
restarting, run the ps -eZ | grep httpd to confirm that httpd is running in the confined
httpd_t domain:

Red Hat Enterprise Linux 6 Security-Enhanced Linux 23

~]# service httpd restart
Stopping httpd: [OK]
Starting httpd: [OK]
~]# ps -eZ | grep httpd
unconfined_u:system_r:httpd_t:s0 8880 ? 00:00:00 httpd
unconfined_u:system_r:httpd_t:s0 8882 ? 00:00:00 httpd
unconfined_u:system_r:httpd_t:s0 8883 ? 00:00:00 httpd
unconfined_u:system_r:httpd_t:s0 8884 ? 00:00:00 httpd
unconfined_u:system_r:httpd_t:s0 8885 ? 00:00:00 httpd
unconfined_u:system_r:httpd_t:s0 8886 ? 00:00:00 httpd
unconfined_u:system_r:httpd_t:s0 8887 ? 00:00:00 httpd
unconfined_u:system_r:httpd_t:s0 8888 ? 00:00:00 httpd
unconfined_u:system_r:httpd_t:s0 8889 ? 00:00:00 httpd

13. As the Linux root user, run the rm -i /var/www/html/test2file command to remove
test2file:

~]# rm -i /var/www/html/test2file
rm: remove regular empty file `/var/www/html/test2file'? y

14. If you do not require httpd to be running, as the Linux root user, run the service httpd stop
command to stop httpd:

~]# service httpd stop
Stopping httpd: [OK]

The examples in these sections demonstrate how data can be protected from a compromised confined-
process (protected by SELinux), as well as how data is more accessible to an attacker from a
compromised unconfined-process (not protected by SELinux).

4.3. Confined and Unconfined Users
Each Linux user is mapped to an SELinux user via SELinux policy. This allows Linux users to inherit the
restrictions on SELinux users. This Linux user mapping is seen by running the semanage login -l
command as the Linux root user:

~]# semanage login -l

Login Name SELinux User MLS/MCS Range

__default__ unconfined_u s0-s0:c0.c1023
root unconfined_u s0-s0:c0.c1023
system_u system_u s0-s0:c0.c1023

In Red Hat Enterprise Linux 6, Linux users are mapped to the SELinux __default__ login by default
(which is mapped to the SELinux unconfined_u user). The following defines the default-mapping:

__default__ unconfined_u s0-s0:c0.c1023

The following example demonstrates adding a new Linux user, and that Linux user being mapped to the
SELinux unconfined_u user. It assumes that the Linux root user is running unconfined, as it does by
default in Red Hat Enterprise Linux 6:

1. As the Linux root user, run the useradd newuser command to create a new Linux user named
newuser.

2. As the Linux root user, run the passwd newuser command to assign a password to the Linux

24 Chapter 4. Targeted Policy

newuser user:

~]# passwd newuser
Changing password for user newuser.
New UNIX password: Enter a password
Retype new UNIX password: Enter the same password again
passwd: all authentication tokens updated successfully.

3. Log out of your current session, and log in as the Linux newuser user. When you log in,
pam_selinux maps the Linux user to an SELinux user (in this case, unconfined_u), and sets up
the resulting SELinux context. The Linux user's shell is then launched with this context. Run the
id -Z command to view the context of a Linux user:

[newuser@localhost ~]$ id -Z
unconfined_u:unconfined_r:unconfined_t:s0-s0:c0.c1023

4. Log out of the Linux newuser's session, and log in with your account. If you do not want the Linux
newuser user, run the userdel -r newuser command as the Linux root user to remove it,
along with the Linux newuser's home directory.

When using o ther p o lic ies, such as MLS, o ther ro les may b e used , fo r examp le, secadm_r.[6]

When using o ther p o lic ies, such as MLS, o ther ro les may also b e used , fo r examp le, secadm_r.[7]

Red Hat Enterprise Linux 6 Security-Enhanced Linux 25

Chapter 5. Working with SELinux
The following sections give a brief overview of the main SELinux packages in Red Hat Enterprise Linux;
installing and updating packages; which log files are used; the main SELinux configuration file; enabling
and disabling SELinux; SELinux modes; configuring Booleans; temporarily and persistently changing file
and directory labels; overriding file system labels with the mount command; mounting NFS file systems;
and how to preserve SELinux contexts when copying and archiving files and directories.

5.1. SELinux Packages
In Red Hat Enterprise Linux, the SELinux packages are installed by default, in a full installation, unless
they are manually excluded during installation. If performing a minimal installation in text mode, the
policycoreutils-python and the policycoreutils-gui package are not be installed by default. Also, by default,
SELinux targeted policy is used, and SELinux runs in enforcing mode. The following is a brief description
of the SELinux packages that are installed on your system by default:

policycoreutils — provides utilities such as restorecon, secon, setfiles, semodule,
load_policy, and setsebool, for operating and managing SELinux.

selinux-policy — provides the SELinux Reference Policy. The SELinux Reference Policy is a complete
SELinux policy, and is used as a basis for other policies, such as the SELinux targeted policy; refer to
the Tresys Technology SELinux Reference Policy page for further information. This package also
provides the /usr/share/selinux/devel/policygentool development utility, as well as
example policy files.

selinux-policy-targeted — provides the SELinux targeted policy.

libselinux — provides an API for SELinux applications.

libselinux-utils — provides the avcstat, getenforce, getsebool, matchpathcon,
selinuxconlist, selinuxdefcon, selinuxenabled, setenforce, togglesebool tools.

libselinux-python — provides Python bindings for developing SELinux applications.

The following is a brief description of the main optional packages which have to be installed via the
yum install <package-name> command:

selinux-policy-mls — provides the MLS SELinux policy.

setroubleshoot-server — translates denial messages, produced when access is denied by SELinux,
into detailed descriptions that are viewed with sealert (which is provided by this package).

setools-console — this package provides the Tresys Technology SETools distribution, a number of
tools and libraries for analyzing and querying policy, audit log monitoring and reporting, and file

context management[]. The setools package is a meta-package for SETools. The setools-gui
package provides the apol, seaudit, and sediffx tools. The setools-console package provides
the seaudit-report, sechecker, sediff, seinfo, sesearch, findcon, replcon, and
indexcon command line tools. Refer to the Tresys Technology SETools page for information about
these tools.

mcstrans — translates levels, such as s0-s0:c0.c1023, to an easier to read form, such as
SystemLow-SystemHigh. This package is not installed by default.

policycoreutils-python — provides utilities such as semanage, audit2allow, audit2why and
chcat, for operating and managing SELinux.

policycoreutils-gui — provides system-config-selinux, a graphical tool for managing SELinux.

5.2. Which Log File is Used
In Red Hat Enterprise Linux 6, the dbus and audit packages are installed by default, unless they are

8

26 Chapter 5. Working with SELinux

http://oss.tresys.com/projects/refpolicy
http://oss.tresys.com/projects/setools
http://oss.tresys.com/projects/setools

removed from the default package selection. The setroubleshoot-server must be installed via Yum
(yum install setroubleshoot).

SELinux denial messages, such as the following, are written to /var/log/audit/audit.log by
default:

type=AVC msg=audit(1223024155.684:49): avc: denied { getattr } for pid=2000
comm="httpd" path="/var/www/html/file1" dev=dm-0 ino=399185
scontext=unconfined_u:system_r:httpd_t:s0
tcontext=system_u:object_r:samba_share_t:s0 tclass=file

May 7 18:55:56 localhost setroubleshoot: SELinux is preventing httpd (httpd_t)
"getattr" to /var/www/html/file1 (samba_share_t). For complete SELinux messages.
run sealert -l de7e30d6-5488-466d-a606-92c9f40d316d

In Red Hat Enterprise Linux 6, setroubleshootd no longer constantly runs as a service, however it is
still used to analyze the AVC messages. Two new programs act as a method to start setroubleshoot
when needed: sedispatch and seapplet. sedispatch runs as part of the audit subsystem, and via
dbus, sends a message when an AVC denial occurs, which will go straight to setroubleshootd if it is
already running, or it will start setroubleshootd if it is not running. seapplet is a tool which runs in
the system's toolbar, waiting for dbus messages in setroubleshootd, and will launch the notification
bubble, allowing the user to review the denial.

Starting Daemons Automatically

To configure the auditd and rsyslogd daemons to automatically start at boot, run the following
commands as the Linux root user:

~]# chkconfig --levels 2345 auditd on
~]# chkconfig --levels 2345 rsyslog on

Use the service service-name status command to check if these services are running, for
example:

~]# service auditd status
auditd (pid 1318) is running...

If the above services are not running (service-name is stopped), use the service service-name
start command as the Linux root user to start them. For example:

~]# service auditd start
Starting auditd: [OK]

5.3. Main Configuration File
The /etc/selinux/config file is the main SELinux configuration file. It controls the SELinux mode
and the SELinux policy to use:

Red Hat Enterprise Linux 6 Security-Enhanced Linux 27

This file controls the state of SELinux on the system.
SELINUX= can take one of these three values:
enforcing - SELinux security policy is enforced.
permissive - SELinux prints warnings instead of enforcing.
disabled - No SELinux policy is loaded.
SELINUX=enforcing
SELINUXTYPE= can take one of these two values:
targeted - Targeted processes are protected,
mls - Multi Level Security protection.
SELINUXTYPE=targeted

SELINUX=enforcing

The SELINUX option sets the mode SELinux runs in. SELinux has three modes: enforcing,
permissive, and disabled. When using enforcing mode, SELinux policy is enforced, and SELinux
denies access based on SELinux policy rules. Denial messages are logged. When using
permissive mode, SELinux policy is not enforced. SELinux does not deny access, but denials
are logged for actions that would have been denied if running SELinux in enforcing mode. When
using disabled mode, SELinux is disabled (the SELinux module is not registered with the Linux
kernel), and only DAC rules are used.

SELINUXTYPE=targeted

The SELINUXTYPE option sets the SELinux policy to use. Targeted policy is the default policy.
Only change this option if you want to use the MLS policy. For information on how to enable the
MLS policy, refer to Section 5.12.2, “Enabling MLS in SELinux”.

Important

When systems run with SELinux in permissive or disabled mode, users have permission to label
files incorrectly. Also, files created while SELinux is disabled are not labeled. This causes
problems when changing to enforcing mode. To prevent incorrectly labeled and unlabeled files
from causing problems, file systems are automatically relabeled when changing from disabled
mode to permissive or enforcing mode.

5.4. Enabling and Disabling SELinux
Use the getenforce or sestatus commands to check the status of SELinux. The getenforce
command returns Enforcing, Permissive, or Disabled. The getenforce command returns
Enforcing when SELinux is enabled (SELinux policy rules are enforced):

~]$ getenforce
Enforcing

The getenforce command returns Permissive when SELinux is enabled, but SELinux policy rules
are not enforced, and only DAC rules are used. The getenforce command returns Disabled if
SELinux is disabled.

The sestatus command returns the SELinux status and the SELinux policy being used:

28 Chapter 5. Working with SELinux

~]$ sestatus
SELinux status: enabled
SELinuxfs mount: /selinux
Current mode: enforcing
Mode from config file: enforcing
Policy version: 24
Policy from config file: targeted

SELinux status: enabled is returned when SELinux is enabled. Current mode: enforcing is
returned when SELinux is running in enforcing mode. Policy from config file: targeted is
returned when the SELinux targeted policy is used.

5.4 .1. Enabling SELinux

On systems with SELinux disabled, the SELINUX=disabled option is configured in
/etc/selinux/config:

This file controls the state of SELinux on the system.
SELINUX= can take one of these three values:
enforcing - SELinux security policy is enforced.
permissive - SELinux prints warnings instead of enforcing.
disabled - No SELinux policy is loaded.
SELINUX=disabled
SELINUXTYPE= can take one of these two values:
targeted - Targeted processes are protected,
mls - Multi Level Security protection.
SELINUXTYPE=targeted

Also, the getenforce command returns Disabled:

~]$ getenforce
Disabled

To enable SELinux:

1. Use the rpm -qa | grep selinux, rpm -q policycoreutils, and rpm -qa | grep
setroubleshoot commands to confirm that the SELinux packages are installed. This guide
assumes the following packages are installed: selinux-policy-targeted, selinux-policy, libselinux,
libselinux-python, libselinux-utils, policycoreutils, policycoreutils-python, setroubleshoot,
setroubleshoot-server, setroubleshoot-plugins. If these packages are not installed, as the Linux
root user, install them via the yum install package-name command. The following packages
are optional: policycoreutils-gui, setroubleshoot, and mcstrans.

2. Before SELinux is enabled, each file on the file system must be labeled with an SELinux context.
Before this happens, confined domains may be denied access, preventing your system from
booting correctly. To prevent this, configure SELINUX=permissive in /etc/selinux/config:

This file controls the state of SELinux on the system.
SELINUX= can take one of these three values:
enforcing - SELinux security policy is enforced.
permissive - SELinux prints warnings instead of enforcing.
disabled - No SELinux policy is loaded.
SELINUX=permissive
SELINUXTYPE= can take one of these two values:
targeted - Targeted processes are protected,
mls - Multi Level Security protection.
SELINUXTYPE=targeted

Red Hat Enterprise Linux 6 Security-Enhanced Linux 29

3. As the Linux root user, run the reboot command to restart the system. During the next boot, file
systems are labeled. The label process labels all files with an SELinux context:

*** Warning -- SELinux targeted policy relabel is required.
*** Relabeling could take a very long time, depending on file
*** system size and speed of hard drives.

Each * (asterisk) character on the bottom line represents 1000 files that have been labeled. In
the above example, four * characters represent 4000 files have been labeled. The time it takes to
label all files depends upon the number of files on the system, and the speed of the hard disk
drives. On modern systems, this process can take as little as 10 minutes.

4. In permissive mode, SELinux policy is not enforced, but denials are still logged for actions that
would have been denied if running in enforcing mode. Before changing to enforcing mode, as the
Linux root user, run the grep "SELinux is preventing" /var/log/messages command
to confirm that SELinux did not deny actions during the last boot. If SELinux did not deny actions
during the last boot, this command does not return any output. Refer to Chapter 8,
Troubleshooting for troubleshooting information if SELinux denied access during boot.

5. If there were no denial messages in /var/log/messages, configure SELINUX=enforcing in
/etc/selinux/config:

This file controls the state of SELinux on the system.
SELINUX= can take one of these three values:
enforcing - SELinux security policy is enforced.
permissive - SELinux prints warnings instead of enforcing.
disabled - No SELinux policy is loaded.
SELINUX=enforcing
SELINUXTYPE= can take one of these two values:
targeted - Targeted processes are protected,
mls - Multi Level Security protection.
SELINUXTYPE=targeted

6. Reboot your system. After reboot, confirm that the getenforce command returns Enforcing:

~]$ getenforce
Enforcing

7. As the Linux root user, run the semanage login -l command to view the mapping between
SELinux and Linux users. The output should be as follows:

Login Name SELinux User MLS/MCS Range

__default__ unconfined_u s0-s0:c0.c1023
root unconfined_u s0-s0:c0.c1023
system_u system_u s0-s0:c0.c1023

If this is not the case, run the following commands as the Linux root user to fix the user mappings. It is
safe to ignore the SELinux-user username is already defined warnings if they occur, where
username can be unconfined_u, guest_u, or xguest_u:

1. semanage user -a -S targeted -P user -R "unconfined_r system_r" -r s0-
s0:c0.c1023 unconfined_u

2. semanage login -m -S targeted -s "unconfined_u" -r s0-s0:c0.c1023
__default__

3. semanage login -m -S targeted -s "unconfined_u" -r s0-s0:c0.c1023 root

4. semanage user -a -S targeted -P user -R guest_r guest_u

30 Chapter 5. Working with SELinux

5. semanage user -a -S targeted -P user -R xguest_r xguest_u

Important

When systems run with SELinux in permissive or disabled mode, users have permission to label
files incorrectly. Also, files created while SELinux is disabled are not labeled. This causes
problems when changing to enforcing mode. To prevent incorrectly labeled and unlabeled files
from causing problems, file systems are automatically relabeled when changing from disabled
mode to permissive or enforcing mode.

5.4 .2. Disabling SELinux

To disable SELinux, configure SELINUX=disabled in /etc/selinux/config:

This file controls the state of SELinux on the system.
SELINUX= can take one of these three values:
enforcing - SELinux security policy is enforced.
permissive - SELinux prints warnings instead of enforcing.
disabled - No SELinux policy is loaded.
SELINUX=disabled
SELINUXTYPE= can take one of these two values:
targeted - Targeted processes are protected,
mls - Multi Level Security protection.
SELINUXTYPE=targeted

Reboot your system. After reboot, confirm that the getenforce command returns Disabled:

~]$ getenforce
Disabled

5.5. SELinux Modes
SELinux has three modes:

Enforcing: SELinux policy is enforced. SELinux denies access based on SELinux policy rules.

Permissive: SELinux policy is not enforced. SELinux does not deny access, but denials are logged for
actions that would have been denied if running in enforcing mode.

Disabled: SELinux is disabled. Only DAC rules are used.

Use the setenforce command to change between enforcing and permissive mode. Changes made
with setenforce do not persist across reboots. To change to enforcing mode, as the Linux root user,
run the setenforce 1 command. To change to permissive mode, run the setenforce 0 command.
Use the getenforce command to view the current SELinux mode.

Persistent mode changes are covered in Section 5.4, “Enabling and Disabling SELinux”.

5.6. Booleans
Booleans allow parts of SELinux policy to be changed at runtime, without any knowledge of SELinux
policy writing. This allows changes, such as allowing services access to NFS file systems, without
reloading or recompiling SELinux policy.

5.6.1. Listing Booleans

Red Hat Enterprise Linux 6 Security-Enhanced Linux 31

For a list of Booleans, an explanation of what each one is, and whether they are on or off, run the
semanage boolean -l command as the Linux root user. The following example does not list all
Booleans:

~]# semanage boolean -l
SELinux boolean Description

ftp_home_dir -> off Allow ftp to read and write files in the
user home directories
xen_use_nfs -> off Allow xen to manage nfs files
xguest_connect_network -> on Allow xguest to configure Network Manager

The SELinux boolean column lists Boolean names. The Description column lists whether the
Booleans are on or off, and what they do.

In the following example, the ftp_home_dir Boolean is off, preventing the FTP daemon (vsftpd) from
reading and writing to files in user home directories:

ftp_home_dir -> off Allow ftp to read and write files in the
user home directories

The getsebool -a command lists Booleans, whether they are on or off, but does not give a
description of each one. The following example does not list all Booleans:

~]$ getsebool -a
allow_console_login --> off
allow_cvs_read_shadow --> off
allow_daemons_dump_core --> on

Run the getsebool boolean-name command to only list the status of the boolean-name Boolean:

~]$ getsebool allow_console_login
allow_console_login --> off

Use a space-separated list to list multiple Booleans:

~]$ getsebool allow_console_login allow_cvs_read_shadow
allow_daemons_dump_core
allow_console_login --> off
allow_cvs_read_shadow --> off
allow_daemons_dump_core --> on

5.6.2. Configuring Booleans

The setsebool boolean-name x command turns Booleans on or off, where boolean-name is a
Boolean name, and x is either on to turn the Boolean on, or off to turn it off.

The following example demonstrates configuring the httpd_can_network_connect_db Boolean:

1. By default, the httpd_can_network_connect_db Boolean is off, preventing Apache HTTP
Server scripts and modules from connecting to database servers:

~]$ getsebool httpd_can_network_connect_db
httpd_can_network_connect_db --> off

2. To temporarily enable Apache HTTP Server scripts and modules to connect to database servers,

32 Chapter 5. Working with SELinux

run the setsebool httpd_can_network_connect_db on command as the Linux root user.

3. Use the getsebool httpd_can_network_connect_db command to verify the Boolean is
turned on:

~]$ getsebool httpd_can_network_connect_db
httpd_can_network_connect_db --> on

This allows Apache HTTP Server scripts and modules to connect to database servers.

4. This change is not persistent across reboots. To make changes persistent across reboots, run
the setsebool -P boolean-name on command as the Linux root user:

~]# setsebool -P httpd_can_network_connect_db on

5. To temporarily revert to the default behavior, as the Linux root user, run the setsebool
httpd_can_network_connect_db off command. For changes that persist across reboots,
run the setsebool -P httpd_can_network_connect_db off command.

5.6.3. Booleans for NFS and CIFS

By default, NFS mounts on the client side are labeled with a default context defined by policy for NFS file
systems. In common policies, this default context uses the nfs_t type. Also, by default, Samba shares
mounted on the client side are labeled with a default context defined by policy. In common policies, this
default context uses the cifs_t type.

Depending on policy configuration, services may not be able to read files labeled with the nfs_t or
cifs_t types. This may prevent file systems labeled with these types from being mounted and then
read or exported by other services. Booleans can be turned on or off to control which services are
allowed to access the nfs_t and cifs_t types.

The setsebool and semanage commands must be run as the Linux root user. The setsebool -P
command makes persistent changes. Do not use the -P option if you do not want changes to persist
across reboots.

Apache HTTP Server

To allow access to NFS file systems (files labeled with the nfs_t type):

~]# setsebool -P httpd_use_nfs on

To allow access to Samba file systems (files labeled with the cifs_t type):

~]# setsebool -P httpd_use_cifs on

Samba

To export NFS file systems:

~]# setsebool -P samba_share_nfs on

FTP (vsftpd)

To allow access to NFS file systems:

Red Hat Enterprise Linux 6 Security-Enhanced Linux 33

~]# setsebool -P allow_ftpd_use_nfs on

To allow access to Samba file systems:

~]# setsebool -P allow_ftpd_use_cifs on

Other Services

For a list of NFS related Booleans for other services:

~]# semanage boolean -l | grep nfs

For a list of Samba related Booleans for other services:

~]# semanage boolean -l | grep cifs

Note

These Booleans exist in SELinux policy as shipped with Red Hat Enterprise Linux 6. They may
not exist in policy shipped with other versions of Red Hat Enterprise Linux or other operating
systems.

5.7. SELinux Contexts - Labeling Files
On systems running SELinux, all processes and files are labeled in a way that represents security-
relevant information. This information is called the SELinux context. For files, this is viewed using the ls
-Z command:

~]$ ls -Z file1
-rw-rw-r-- user1 group1 unconfined_u:object_r:user_home_t:s0 file1

In this example, SELinux provides a user (unconfined_u), a role (object_r), a type (user_home_t),
and a level (s0). This information is used to make access control decisions. On DAC systems, access is
controlled based on Linux user and group IDs. SELinux policy rules are checked after DAC rules.
SELinux policy rules are not used if DAC rules deny access first.

There are multiple commands for managing the SELinux context for files, such as chcon, semanage
fcontext, and restorecon.

5.7.1. Temporary Changes: chcon

The chcon command changes the SELinux context for files. However, changes made with the chcon
command do not survive a file system relabel, or the execution of the restorecon command. SELinux
policy controls whether users are able to modify the SELinux context for any given file. When using
chcon, users provide all or part of the SELinux context to change. An incorrect file type is a common
cause of SELinux denying access.

Quick Reference

Run the chcon -t type file-name command to change the file type, where type is a type, such
as httpd_sys_content_t, and file-name is a file or directory name.

34 Chapter 5. Working with SELinux

Run the chcon -R -t type directory-name command to change the type of the directory and its
contents, where type is a type, such as httpd_sys_content_t, and directory-name is a
directory name.

Changing a File's or Directory's Type

The following example demonstrates changing the type, and no other attributes of the SELinux context:

1. Run the cd command without arguments to change into your home directory.

2. Run the touch file1 command to create a new file. Use the ls -Z file1 command to view
the SELinux context for file1:

~]$ ls -Z file1
-rw-rw-r-- user1 group1 unconfined_u:object_r:user_home_t:s0 file1

In this example, the SELinux context for file1 includes the SELinux unconfined_u user,
object_r role, user_home_t type, and the s0 level. For a description of each part of the
SELinux context, refer to Chapter 3, SELinux Contexts.

3. Run the chcon -t samba_share_t file1 command to change the type to samba_share_t.
The -t option only changes the type. View the change with ls -Z file1:

~]$ ls -Z file1
-rw-rw-r-- user1 group1 unconfined_u:object_r:samba_share_t:s0 file1

4. Use the restorecon -v file1 command to restore the SELinux context for the file1 file.
Use the -v option to view what changes:

~]$ restorecon -v file1
restorecon reset file1 context unconfined_u:object_r:samba_share_t:s0-
>system_u:object_r:user_home_t:s0

In this example, the previous type, samba_share_t, is restored to the correct, user_home_t
type. When using targeted policy (the default SELinux policy in Red Hat Enterprise Linux 6), the
restorecon command reads the files in the /etc/selinux/targeted/contexts/files/
directory, to see which SELinux context files should have.

The example in this section works the same for directories, for example, if file1 was a directory.

Changing a Directory and its Contents Types

The following example demonstrates creating a new directory, and changing the directory's file type
(along with its contents) to a type used by the Apache HTTP Server. The configuration in this example is
used if you want Apache HTTP Server to use a different document root (instead of /var/www/html/):

1. As the Linux root user, run the mkdir /web command to create a new directory, and then the
touch /web/file{1,2,3} command to create 3 empty files (file1, file2, and file3). The
/web/ directory and files in it are labeled with the default_t type:

~]# ls -dZ /web
drwxr-xr-x root root unconfined_u:object_r:default_t:s0 /web
~]# ls -lZ /web
-rw-r--r-- root root unconfined_u:object_r:default_t:s0 file1
-rw-r--r-- root root unconfined_u:object_r:default_t:s0 file2
-rw-r--r-- root root unconfined_u:object_r:default_t:s0 file3

2. As the Linux root user, run the chcon -R -t httpd_sys_content_t /web/ command to

Red Hat Enterprise Linux 6 Security-Enhanced Linux 35

change the type of the /web/ directory (and its contents) to httpd_sys_content_t:

~]# chcon -R -t httpd_sys_content_t /web/
~]# ls -dZ /web/
drwxr-xr-x root root unconfined_u:object_r:httpd_sys_content_t:s0 /web/
~]# ls -lZ /web/
-rw-r--r-- root root unconfined_u:object_r:httpd_sys_content_t:s0 file1
-rw-r--r-- root root unconfined_u:object_r:httpd_sys_content_t:s0 file2
-rw-r--r-- root root unconfined_u:object_r:httpd_sys_content_t:s0 file3

3. As the Linux root user, run the restorecon -R -v /web/ command to restore the default
SELinux contexts:

~]# restorecon -R -v /web/
restorecon reset /web context unconfined_u:object_r:httpd_sys_content_t:s0-
>system_u:object_r:default_t:s0
restorecon reset /web/file2 context
unconfined_u:object_r:httpd_sys_content_t:s0->system_u:object_r:default_t:s0
restorecon reset /web/file3 context
unconfined_u:object_r:httpd_sys_content_t:s0->system_u:object_r:default_t:s0
restorecon reset /web/file1 context
unconfined_u:object_r:httpd_sys_content_t:s0->system_u:object_r:default_t:s0

Refer to the chcon(1) manual page for further information about chcon.

Note

Type Enforcement is the main permission control used in SELinux targeted policy. For the most
part, SELinux users and roles can be ignored.

5.7.2. Persistent Changes: semanage fcontext

The semanage fcontext command changes the SELinux context for files. When using targeted
policy, changes made with this command are added to the
/etc/selinux/targeted/contexts/files/file_contexts file if the changes are to files that
exists in file_contexts, or are added to file_contexts.local for new files and directories, such
as creating a /web/ directory. The setfiles command, which is used when a file system is relabeled,
and the restorecon command, which restores the default SELinux contexts, read these files. This
means that changes made by semanage fcontext are persistent, even if the file system is relabeled.
SELinux policy controls whether users are able to modify the SELinux context for any given file.

Quick Reference

To make SELinux context changes that survive a file system relabel:

1. Run the semanage fcontext -a options file-name|directory-name command,
remembering to use the full path to the file or directory.

2. Run the restorecon -v file-name|directory-name command to apply the context changes.

Changing a File's Type

The following example demonstrates changing a file's type, and no other attributes of the SELinux
context:

1. As the Linux root user, run the touch /etc/file1 command to create a new file. By default,

36 Chapter 5. Working with SELinux

newly-created files in the /etc/ directory are labeled with the etc_t type:

~]# ls -Z /etc/file1
-rw-r--r-- root root unconfined_u:object_r:etc_t:s0 /etc/file1

2. As the Linux root user, run the semanage fcontext -a -t samba_share_t /etc/file1
command to change the file1 type to samba_share_t. The -a option adds a new record, and
the -t option defines a type (samba_share_t). Note: running this command does not directly
change the type—file1 is still labeled with the etc_t type:

~]# semanage fcontext -a -t samba_share_t /etc/file1
~]# ls -Z /etc/file1
-rw-r--r-- root root unconfined_u:object_r:etc_t:s0 /etc/file1

The semanage fcontext -a -t samba_share_t /etc/file1 command adds the
following entry to /etc/selinux/targeted/contexts/files/file_contexts.local:

/etc/file1 unconfined_u:object_r:samba_share_t:s0

3. As the Linux root user, run the restorecon -v /etc/file1 command to change the type.
Because the semanage command added an entry to file.contexts.local for /etc/file1,
the restorecon command changes the type to samba_share_t:

~]# restorecon -v /etc/file1
restorecon reset /etc/file1 context unconfined_u:object_r:etc_t:s0-
>system_u:object_r:samba_share_t:s0

4. As the Linux root user, run the rm -i /etc/file1 command to remove file1.

5. As the Linux root user, run the semanage fcontext -d /etc/file1 command to remove the
context added for /etc/file1.

Changing a Directory's Type

The following example demonstrates creating a new directory and changing that directory's file type, to a
type used by Apache HTTP Server:

1. As the Linux root user, run the mkdir /web command to create a new directory. This directory is
labeled with the default_t type:

~]# ls -dZ /web
drwxr-xr-x root root unconfined_u:object_r:default_t:s0 /web

The ls -d option makes ls list information about a directory, rather than its contents, and the -Z
option makes ls display the SELinux context (in this example,
unconfined_u:object_r:default_t:s0).

2. As the Linux root user, run the semanage fcontext -a -t httpd_sys_content_t /web
command to change the /web/ type to httpd_sys_content_t. The -a option adds a new
record, and the -t option defines a type (httpd_sys_content_t). Note: running this command
does not directly change the type - /web/ is still labeled with the default_t type:

~]# semanage fcontext -a -t httpd_sys_content_t /web
~]# ls -dZ /web
drwxr-xr-x root root unconfined_u:object_r:default_t:s0 /web

The semanage fcontext -a -t httpd_sys_content_t /web command adds the following

Red Hat Enterprise Linux 6 Security-Enhanced Linux 37

entry to /etc/selinux/targeted/contexts/files/file_contexts.local:

/web unconfined_u:object_r:httpd_sys_content_t:s0

3. As the Linux root user, run the restorecon -v /web command to change the type. Since the
semanage command added an entry to file.contexts.local for /web, the restorecon
command changes the type to httpd_sys_content_t:

~]# restorecon -v /web
restorecon reset /web context unconfined_u:object_r:default_t:s0-
>system_u:object_r:httpd_sys_content_t:s0

By default, newly-created files and directories inherit the SELinux type of their parent folders.
When using this example, and before removing the SELinux context added for /web/, files and
directories created in the /web/ directory are labeled with the httpd_sys_content_t type.

4. As the Linux root user, run the semanage fcontext -d /web command to remove the context
added for /web/.

5. As the Linux root user, run the restorecon -v /web command to restore the default SELinux
context.

Changing a Directory and its Contents Types

The following example demonstrates creating a new directory, and changing the directory's file type
(along with its contents) to a type used by Apache HTTP Server. The configuration in this example is
used if you want Apache HTTP Server to use a different document root (instead of /var/www/html/):

1. As the Linux root user, run the mkdir /web command to create a new directory, and then the
touch /web/file{1,2,3} command to create 3 empty files (file1, file2, and file3). The
/web/ directory and files in it are labeled with the default_t type:

~]# ls -dZ /web
drwxr-xr-x root root unconfined_u:object_r:default_t:s0 /web
~]# ls -lZ /web
-rw-r--r-- root root unconfined_u:object_r:default_t:s0 file1
-rw-r--r-- root root unconfined_u:object_r:default_t:s0 file2
-rw-r--r-- root root unconfined_u:object_r:default_t:s0 file3

2. As the Linux root user, run the semanage fcontext -a -t httpd_sys_content_t
"/web(/.*)?" command to change the type of the /web/ directory and the files in it, to
httpd_sys_content_t. The -a option adds a new record, and the -t option defines a type
(httpd_sys_content_t). The "/web(/.*)?" regular expression causes the semanage command
to apply changes to the /web/ directory, as well as the files in it. Note: running this command
does not directly change the type - /web/ and files in it are still labeled with the default_t type:

~]# ls -dZ /web
drwxr-xr-x root root unconfined_u:object_r:default_t:s0 /web
~]# ls -lZ /web
-rw-r--r-- root root unconfined_u:object_r:default_t:s0 file1
-rw-r--r-- root root unconfined_u:object_r:default_t:s0 file2
-rw-r--r-- root root unconfined_u:object_r:default_t:s0 file3

The semanage fcontext -a -t httpd_sys_content_t "/web(/.*)?" command adds
the following entry to /etc/selinux/targeted/contexts/files/file_contexts.local:

/web(/.*)? system_u:object_r:httpd_sys_content_t:s0

38 Chapter 5. Working with SELinux

3. As the Linux root user, run the restorecon -R -v /web command to change the type of the
/web/ directory, as well as all files in it. The -R is for recursive, which means all files and
directories under the /web/ directory are labeled with the httpd_sys_content_t type. Since
the semanage command added an entry to file.contexts.local for /web(/.*)?, the
restorecon command changes the types to httpd_sys_content_t:

~]# restorecon -R -v /web
restorecon reset /web context unconfined_u:object_r:default_t:s0-
>system_u:object_r:httpd_sys_content_t:s0
restorecon reset /web/file2 context unconfined_u:object_r:default_t:s0-
>system_u:object_r:httpd_sys_content_t:s0
restorecon reset /web/file3 context unconfined_u:object_r:default_t:s0-
>system_u:object_r:httpd_sys_content_t:s0
restorecon reset /web/file1 context unconfined_u:object_r:default_t:s0-
>system_u:object_r:httpd_sys_content_t:s0

By default, newly-created files and directories inherit the SELinux type of their parents. In this
example, files and directories created in the /web/ directory will be labeled with the
httpd_sys_content_t type.

4. As the Linux root user, run the semanage fcontext -d "/web(/.*)?" command to remove
the context added for "/web(/.*)?".

5. As the Linux root user, run the restorecon -R -v /web command to restore the default
SELinux contexts.

Deleting an added Context

The following example demonstrates adding and removing an SELinux context:

1. As the Linux root user, run the semanage fcontext -a -t httpd_sys_content_t /test
command. The /test/ directory does not have to exist. This command adds the following context
to /etc/selinux/targeted/contexts/files/file_contexts.local:

/test system_u:object_r:httpd_sys_content_t:s0

2. To remove the context, as the Linux root user, run the semanage fcontext -d file-
name|directory-name command, where file-name|directory-name is the first part in
file_contexts.local. The following is an example of a context in file_contexts.local:

/test system_u:object_r:httpd_sys_content_t:s0

With the first part being /test. To prevent the /test/ directory from being labeled with the
httpd_sys_content_t after running restorecon, or after a file system relabel, run the
following command as the Linux root user to delete the context from file_contexts.local:

~]# semanage fcontext -d /test

If the context is part of a regular expression, for example, /web(/.*)?, use quotation marks around the
regular expression:

~]# semanage fcontext -d "/web(/.*)?"

Refer to the semanage(8) manual page for further information about semanage.

Red Hat Enterprise Linux 6 Security-Enhanced Linux 39

Important

When changing the SELinux context with semanage fcontext -a, use the full path to the file
or directory to avoid files being mislabeled after a file system relabel, or after the restorecon
command is run.

5.8. The file_t and default_t Types
For file systems that support extended attributes, when a file that lacks an SELinux context on disk is
accessed, it is treated as if it had a default context as defined by SELinux policy. In common policies, this
default context uses the file_t type. This should be the only use of this type, so that files without a
context on disk can be distinguished in policy, and generally kept inaccessible to confined domains. The
file_t type should not exist on correctly-labeled file systems, because all files on a system running
SELinux should have an SELinux context, and the file_t type is never used in file-context

configuration[].

The default_t type is used on files that do not match any other pattern in file-context configuration, so
that such files can be distinguished from files that do not have a context on disk, and generally kept
inaccessible to confined domains. If you create a new top-level directory, such as /mydirectory/, this
directory may be labeled with the default_t type. If services need access to such a directory, update
the file-contexts configuration for this location. Refer to Section 5.7.2, “Persistent Changes: semanage
fcontext” for details on adding a context to the file-context configuration.

5.9. Mounting File Systems
By default, when a file system that supports extended attributes is mounted, the security context for
each file is obtained from the security.selinux extended attribute of the file. Files in file systems that do
not support extended attributes are assigned a single, default security context from the policy
configuration, based on file system type.

Use the mount -o context command to override existing extended attributes, or to specify a different,
default context for file systems that do not support extended attributes. This is useful if you do not trust
a file system to supply the correct attributes, for example, removable media used in multiple systems.
The mount -o context command can also be used to support labeling for file systems that do not
support extended attributes, such as File Allocation Table (FAT) or NFS file systems. The context
specified with the context is not written to disk: the original contexts are preserved, and are seen when
mounting without a context option (if the file system had extended attributes in the first place).

For further information about file system labeling, refer to James Morris's "Filesystem Labeling in
SELinux" article: http://www.linuxjournal.com/article/7426.

5.9.1. Context Mounts

To mount a file system with the specified context, overriding existing contexts if they exist, or to specify a
different, default context for a file system that does not support extended attributes, as the Linux root
user, use the mount -o context=SELinux_user:role:type:level command when mounting the
desired file system. Context changes are not written to disk. By default, NFS mounts on the client side
are labeled with a default context defined by policy for NFS file systems. In common policies, this default
context uses the nfs_t type. Without additional mount options, this may prevent sharing NFS file
systems via other services, such as the Apache HTTP Server. The following example mounts an NFS
file system so that it can be shared via the Apache HTTP Server:

9

40 Chapter 5. Working with SELinux

http://www.linuxjournal.com/article/7426

~]# mount server:/export /local/mount/point -o \
context="system_u:object_r:httpd_sys_content_t:s0"

Newly-created files and directories on this file system appear to have the SELinux context specified with
-o context; however, since context changes are not written to disk for these situations, the context
specified with the context option is only retained if the context option is used on the next mount, and
if the same context is specified.

Type Enforcement is the main permission control used in SELinux targeted policy. For the most part,
SELinux users and roles can be ignored, so, when overriding the SELinux context with -o context, use
the SELinux system_u user and object_r role, and concentrate on the type. If you are not using the
MLS policy or multi-category security, use the s0 level.

Note

When a file system is mounted with a context option, context changes (by users and
processes) are prohibited. For example, running chcon on a file system mounted with a
context option results in a Operation not supported error.

5.9.2. Changing the Default Context

As mentioned in Section 5.8, “The file_t and default_t Types”, on file systems that support extended
attributes, when a file that lacks an SELinux context on disk is accessed, it is treated as if it had a default
context as defined by SELinux policy. In common policies, this default context uses the file_t type. If it
is desirable to use a different default context, mount the file system with the defcontext option.

The following example mounts a newly-created file system (on /dev/sda2) to the newly-created
/test/ directory. It assumes that there are no rules in
/etc/selinux/targeted/contexts/files/ that define a context for the /test/ directory:

~]# mount /dev/sda2 /test/ -o defcontext="system_u:object_r:samba_share_t:s0"

In this example:

the defcontext option defines that system_u:object_r:samba_share_t:s0 is "the default

security context for unlabeled files" [].

when mounted, the root directory (/test/) of the file system is treated as if it is labeled with the
context specified by defcontext (this label is not stored on disk). This affects the labeling for files
created under /test/: new files inherit the samba_share_t type, and these labels are stored on
disk.

files created under /test/ while the file system was mounted with a defcontext option retain their
labels.

5.9.3. Mounting an NFS File System

By default, NFS mounts on the client side are labeled with a default context defined by policy for NFS file
systems. In common policies, this default context uses the nfs_t type. Depending on policy
configuration, services, such as Apache HTTP Server and MySQL, may not be able to read files labeled
with the nfs_t type. This may prevent file systems labeled with this type from being mounted and then
read or exported by other services.

If you would like to mount an NFS file system and read or export that file system with another service,
use the context option when mounting to override the nfs_t type. Use the following context option to

10

Red Hat Enterprise Linux 6 Security-Enhanced Linux 41

mount NFS file systems so that they can be shared via the Apache HTTP Server:

~]# mount server:/export /local/mount/point -o
context="system_u:object_r:httpd_sys_content_t:s0"

Since context changes are not written to disk for these situations, the context specified with the
context option is only retained if the context option is used on the next mount, and if the same
context is specified.

As an alternative to mounting file systems with context options, Booleans can be turned on to allow
services access to file systems labeled with the nfs_t type. Refer to Section 5.6.3, “Booleans for NFS
and CIFS” for instructions on configuring Booleans to allow services access to the nfs_t type.

5.9.4 . Multiple NFS Mounts

When mounting multiple mounts from the same NFS export, attempting to override the SELinux context of
each mount with a different context, results in subsequent mount commands failing. In the following
example, the NFS server has a single export, /export, which has two subdirectories, web/ and
database/. The following commands attempt two mounts from a single NFS export, and try to override
the context for each one:

~]# mount server:/export/web /local/web -o
context="system_u:object_r:httpd_sys_content_t:s0"

~]# mount server:/export/database /local/database -o
context="system_u:object_r:mysqld_db_t:s0"

The second mount command fails, and the following is logged to /var/log/messages:

kernel: SELinux: mount invalid. Same superblock, different security settings for
(dev 0:15, type nfs)

To mount multiple mounts from a single NFS export, with each mount having a different context, use the
-o nosharecache,context options. The following example mounts multiple mounts from a single
NFS export, with a different context for each mount (allowing a single service access to each one):

~]# mount server:/export/web /local/web -o
nosharecache,context="system_u:object_r:httpd_sys_content_t:s0"

~]# mount server:/export/database /local/database -o \
nosharecache,context="system_u:object_r:mysqld_db_t:s0"

In this example, server:/export/web is mounted locally to /local/web/, with all files being labeled
with the httpd_sys_content_t type, allowing Apache HTTP Server access.
server:/export/database is mounted locally to /local/database, with all files being labeled with
the mysqld_db_t type, allowing MySQL access. These type changes are not written to disk.

Important

The nosharecache options allows you to mount the same subdirectory of an export multiple
times with different contexts (for example, mounting /export/web multiple times). Do not mount
the same subdirectory from an export multiple times with different contexts, as this creates an
overlapping mount, where files are accessible under two different contexts.

42 Chapter 5. Working with SELinux

5.9.5. Making Context Mounts Persistent

To make context mounts persistent across remounting and reboots, add entries for the file systems in
/etc/fstab or an automounter map, and use the desired context as a mount option. The following
example adds an entry to /etc/fstab for an NFS context mount:

server:/export /local/mount/ nfs context="system_u:object_r:httpd_sys_content_t:s0"
0 0

5.10. Maintaining SELinux Labels
These sections describe what happens to SELinux contexts when copying, moving, and archiving files
and directories. Also, it explains how to preserve contexts when copying and archiving.

5.10.1. Copying Files and Directories

When a file or directory is copied, a new file or directory is created if it does not exist. That new file or
directory's context is based on default-labeling rules, not the original file or directory's context (unless
options were used to preserve the original context). For example, files created in user home directories
are labeled with the user_home_t type:

~]$ touch file1
~]$ ls -Z file1
-rw-rw-r-- user1 group1 unconfined_u:object_r:user_home_t:s0 file1

If such a file is copied to another directory, such as /etc/, the new file is created in accordance to
default-labeling rules for the /etc/ directory. Copying a file (without additional options) may not
preserve the original context:

~]$ ls -Z file1
-rw-rw-r-- user1 group1 unconfined_u:object_r:user_home_t:s0 file1
~]# cp file1 /etc/
~]$ ls -Z /etc/file1
-rw-r--r-- root root unconfined_u:object_r:etc_t:s0 /etc/file1

When file1 is copied to /etc/, if /etc/file1 does not exist, /etc/file1 is created as a new file.
As shown in the example above, /etc/file1 is labeled with the etc_t type, in accordance to default-
labeling rules.

When a file is copied over an existing file, the existing file's context is preserved, unless the user
specified cp options to preserve the context of the original file, such as --preserve=context.
SELinux policy may prevent contexts from being preserved during copies.

Copying Without Preserving SELinux Contexts

When copying a file with the cp command, if no options are given, the type is inherited from the targeted,
parent directory:

Red Hat Enterprise Linux 6 Security-Enhanced Linux 43

~]$ touch file1
~]$ ls -Z file1
-rw-rw-r-- user1 group1 unconfined_u:object_r:user_home_t:s0 file1
~]$ ls -dZ /var/www/html/
drwxr-xr-x root root system_u:object_r:httpd_sys_content_t:s0 /var/www/html/
~]# cp file1 /var/www/html/
~]$ ls -Z /var/www/html/file1
-rw-r--r-- root root unconfined_u:object_r:httpd_sys_content_t:s0
/var/www/html/file1

In this example, file1 is created in a user's home directory, and is labeled with the user_home_t
type. The /var/www/html/ directory is labeled with the httpd_sys_content_t type, as shown with
the ls -dZ /var/www/html/ command. When file1 is copied to /var/www/html/, it inherits the
httpd_sys_content_t type, as shown with the ls -Z /var/www/html/file1 command.

Preserving SELinux Contexts When Copying

Use the cp --preserve=context command to preserve contexts when copying:

~]$ touch file1
~]$ ls -Z file1
-rw-rw-r-- user1 group1 unconfined_u:object_r:user_home_t:s0 file1
~]$ ls -dZ /var/www/html/
drwxr-xr-x root root system_u:object_r:httpd_sys_content_t:s0 /var/www/html/
~]# cp --preserve=context file1 /var/www/html/
~]$ ls -Z /var/www/html/file1
-rw-r--r-- root root unconfined_u:object_r:user_home_t:s0 /var/www/html/file1

In this example, file1 is created in a user's home directory, and is labeled with the user_home_t
type. The /var/www/html/ directory is labeled with the httpd_sys_content_t type, as shown with
the ls -dZ /var/www/html/ command. Using the --preserve=context option preserves SELinux
contexts during copy operations. As shown with the ls -Z /var/www/html/file1 command, the
file1 user_home_t type was preserved when the file was copied to /var/www/html/.

Copying and Changing the Context

Use the cp -Z command to change the destination copy's context. The following example was
performed in the user's home directory:

~]$ touch file1
~]$ cp -Z system_u:object_r:samba_share_t:s0 file1 file2
~]$ ls -Z file1 file2
-rw-rw-r-- user1 group1 unconfined_u:object_r:user_home_t:s0 file1
-rw-rw-r-- user1 group1 system_u:object_r:samba_share_t:s0 file2
~]$ rm file1 file2

In this example, the context is defined with the -Z option. Without the -Z option, file2 would be labeled
with the unconfined_u:object_r:user_home_t context.

Copying a File Over an Existing File

When a file is copied over an existing file, the existing file's context is preserved (unless an option is
used to preserve contexts). For example:

44 Chapter 5. Working with SELinux

~]# touch /etc/file1
~]# ls -Z /etc/file1
-rw-r--r-- root root unconfined_u:object_r:etc_t:s0 /etc/file1
~]# touch /tmp/file2
~]# ls -Z /tmp/file2
-rw-r--r-- root root unconfined_u:object_r:user_tmp_t:s0 /tmp/file2
~]# cp /tmp/file2 /etc/file1
~]# ls -Z /etc/file1
-rw-r--r-- root root unconfined_u:object_r:etc_t:s0 /etc/file1

In this example, two files are created: /etc/file1, labeled with the etc_t type, and /tmp/file2,
labeled with the user_tmp_t type. The cp /tmp/file2 /etc/file1 command overwrites file1
with file2. After copying, the ls -Z /etc/file1 command shows file1 labeled with the etc_t
type, not the user_tmp_t type from /tmp/file2 that replaced /etc/file1.

Important

Copy files and directories, rather than moving them. This helps ensure they are labeled with the
correct SELinux contexts. Incorrect SELinux contexts can prevent processes from accessing such
files and directories.

5.10.2. Moving Files and Directories

Files and directories keep their current SELinux context when they are moved. In many cases, this is
incorrect for the location they are being moved to. The following example demonstrates moving a file
from a user's home directory to /var/www/html/, which is used by the Apache HTTP Server. Since the
file is moved, it does not inherit the correct SELinux context:

1. Run the cd command without any arguments to change into your home directory. Once in your
home directory, run the touch file1 command to create a file. This file is labeled with the
user_home_t type:

~]$ ls -Z file1
-rw-rw-r-- user1 group1 unconfined_u:object_r:user_home_t:s0 file1

2. Run the ls -dZ /var/www/html/ command to view the SELinux context of the
/var/www/html/ directory:

~]$ ls -dZ /var/www/html/
drwxr-xr-x root root system_u:object_r:httpd_sys_content_t:s0 /var/www/html/

By default, the /var/www/html/ directory is labeled with the httpd_sys_content_t type. Files
and directories created under the /var/www/html/ directory inherit this type, and as such, they
are labeled with this type.

3. As the Linux root user, run the mv file1 /var/www/html/ command to move file1 to the
/var/www/html/ directory. Since this file is moved, it keeps its current user_home_t type:

~]# mv file1 /var/www/html/
~]# ls -Z /var/www/html/file1
-rw-rw-r-- user1 group1 unconfined_u:object_r:user_home_t:s0
/var/www/html/file1

By default, the Apache HTTP Server can not read files that are labeled with the user_home_t type. If all
files comprising a web page are labeled with the user_home_t type, or another type that the Apache

Red Hat Enterprise Linux 6 Security-Enhanced Linux 45

HTTP Server can not read, permission is denied when attempting to access them via Firefox or text-
based Web browsers.

Important

Moving files and directories with the mv command may result in the wrong SELinux context,
preventing processes, such as the Apache HTTP Server and Samba, from accessing such files
and directories.

5.10.3. Checking the Default SELinux Context

Use the matchpathcon command to check if files and directories have the correct SELinux context.
From the matchpathcon(8) manual page: "matchpathcon queries the system policy and outputs the

default security context associated with the file path." []. The following example demonstrates using the
matchpathcon command to verify that files in /var/www/html/ directory are labeled correctly:

1. As the Linux root user, run the touch /var/www/html/file{1,2,3} command to create three
files (file1, file2, and file3). These files inherit the httpd_sys_content_t type from the
/var/www/html/ directory:

~]# touch /var/www/html/file{1,2,3}
~]# ls -Z /var/www/html/
-rw-r--r-- root root unconfined_u:object_r:httpd_sys_content_t:s0 file1
-rw-r--r-- root root unconfined_u:object_r:httpd_sys_content_t:s0 file2
-rw-r--r-- root root unconfined_u:object_r:httpd_sys_content_t:s0 file3

2. As the Linux root user, run the chcon -t samba_share_t /var/www/html/file1 command
to change the file1 type to samba_share_t. Note: the Apache HTTP Server can not read files
or directories labeled with the samba_share_t type.

3. The matchpathcon -V option compares the current SELinux context to the correct, default
context in SELinux policy. Run the matchpathcon -V /var/www/html/* command to check all
files in the /var/www/html/ directory:

~]$ matchpathcon -V /var/www/html/*
/var/www/html/file1 has context unconfined_u:object_r:samba_share_t:s0, should
be system_u:object_r:httpd_sys_content_t:s0
/var/www/html/file2 verified.
/var/www/html/file3 verified.

The following output from the matchpathcon command explains that file1 is labeled with the
samba_share_t type, but should be labeled with the httpd_sys_content_t type:

/var/www/html/file1 has context unconfined_u:object_r:samba_share_t:s0, should be
system_u:object_r:httpd_sys_content_t:s0

To resolve the label problem and allow the Apache HTTP Server access to file1, as the Linux root
user, run the restorecon -v /var/www/html/file1 command:

~]# restorecon -v /var/www/html/file1
restorecon reset /var/www/html/file1 context
unconfined_u:object_r:samba_share_t:s0->system_u:object_r:httpd_sys_content_t:s0

5.10.4 . Archiving Files with tar

11

46 Chapter 5. Working with SELinux

tar does not retain extended attributes by default. Since SELinux contexts are stored in extended
attributes, contexts can be lost when archiving files. Use tar --selinux to create archives that retain
contexts. If a tar archive contains files without extended attributes, or if you want the extended attributes
to match the system defaults, run the archive through restorecon:

~]$ tar -xvf archive.tar | restorecon -f -

Note: depending on the directory, you may need to be the Linux root user to run the restorecon
command.

The following example demonstrates creating a tar archive that retains SELinux contexts:

1. As the Linux root user, run the touch /var/www/html/file{1,2,3} command to create three
files (file1, file2, and file3). These files inherit the httpd_sys_content_t type from the
/var/www/html/ directory:

~]# touch /var/www/html/file{1,2,3}
~]# ls -Z /var/www/html/
-rw-r--r-- root root unconfined_u:object_r:httpd_sys_content_t:s0 file1
-rw-r--r-- root root unconfined_u:object_r:httpd_sys_content_t:s0 file2
-rw-r--r-- root root unconfined_u:object_r:httpd_sys_content_t:s0 file3

2. Run the cd /var/www/html/ command to change into the /var/www/html/ directory. Once in
this directory, as the Linux root user, run the tar --selinux -cf test.tar file{1,2,3}
command to create a tar archive named test.tar.

3. As the Linux root user, run the mkdir /test command to create a new directory, and then, run
the chmod 777 /test/ command to allow all users full-access to the /test/ directory.

4. Run the cp /var/www/html/test.tar /test/ command to copy the test.tar file in to the
/test/ directory.

5. Run the cd /test/ command to change into the /test/ directory. Once in this directory, run the
tar -xvf test.tar command to extract the tar archive.

6. Run the ls -lZ /test/ command to view the SELinux contexts. The httpd_sys_content_t
type has been retained, rather than being changed to default_t, which would have happened
had the --selinux not been used:

~]$ ls -lZ /test/
-rw-r--r-- user1 group1 unconfined_u:object_r:httpd_sys_content_t:s0 file1
-rw-r--r-- user1 group1 unconfined_u:object_r:httpd_sys_content_t:s0 file2
-rw-r--r-- user1 group1 unconfined_u:object_r:httpd_sys_content_t:s0 file3
-rw-r--r-- user1 group1 unconfined_u:object_r:default_t:s0 test.tar

7. If the /test/ directory is no longer required, as the Linux root user, run the rm -ri /test/
command to remove it, as well as all files in it.

Refer to the tar(1) manual page for further information about tar, such as the --xattrs option that
retains all extended attributes.

5.10.5. Archiving Files with star

star does not retain extended attributes by default. Since SELinux contexts are stored in extended
attributes, contexts can be lost when archiving files. Use star -xattr -H=exustar to create archives
that retain contexts. The star package is not installed by default. To install star, run the yum install
star command as the Linux root user.

The following example demonstrates creating a Star archive that retains SELinux contexts:

Red Hat Enterprise Linux 6 Security-Enhanced Linux 47

1. As the Linux root user, run the touch /var/www/html/file{1,2,3} command to create three
files (file1, file2, and file3). These files inherit the httpd_sys_content_t type from the
/var/www/html/ directory:

~]# touch /var/www/html/file{1,2,3}
~]# ls -Z /var/www/html/
-rw-r--r-- root root unconfined_u:object_r:httpd_sys_content_t:s0 file1
-rw-r--r-- root root unconfined_u:object_r:httpd_sys_content_t:s0 file2
-rw-r--r-- root root unconfined_u:object_r:httpd_sys_content_t:s0 file3

2. Run the cd /var/www/html/ command to change into the /var/www/html/ directory. Once in
this directory, as the Linux root user, run the star -xattr -H=exustar -c -f=test.star
file{1,2,3} command to create a Star archive named test.star:

~]# star -xattr -H=exustar -c -f=test.star file{1,2,3}
star: 1 blocks + 0 bytes (total of 10240 bytes = 10.00k).

3. As the Linux root user, run the mkdir /test command to create a new directory, and then, run
the chmod 777 /test/ command to allow all users full-access to the /test/ directory.

4. Run the cp /var/www/html/test.star /test/ command to copy the test.star file in to
the /test/ directory.

5. Run the cd /test/ command to change into the /test/ directory. Once in this directory, run the
star -x -f=test.star command to extract the Star archive:

~]$ star -x -f=test.star
star: 1 blocks + 0 bytes (total of 10240 bytes = 10.00k).

6. Run the ls -lZ /test/ command to view the SELinux contexts. The httpd_sys_content_t
type has been retained, rather than being changed to default_t, which would have happened
had the -xattr -H=exustar option not been used:

~]$ ls -lZ /test/
-rw-r--r-- user1 group1 unconfined_u:object_r:httpd_sys_content_t:s0 file1
-rw-r--r-- user1 group1 unconfined_u:object_r:httpd_sys_content_t:s0 file2
-rw-r--r-- user1 group1 unconfined_u:object_r:httpd_sys_content_t:s0 file3
-rw-r--r-- user1 group1 unconfined_u:object_r:default_t:s0 test.star

7. If the /test/ directory is no longer required, as the Linux root user, run the rm -ri /test/
command to remove it, as well as all files in it.

8. If star is no longer required, as the Linux root user, run the yum remove star command to
remove the package.

Refer to the star(1) manual page for further information about star.

5.11. Information Gathering Tools
These tools are command line tools, providing formatted output. They are harder to use as part of
command line piping, but they provide gathered and well formatted information quickly.

avcstat

This command provides a short output of the access vector cache statistics since boot. You can watch
the statistics in real time by specifying a time interval in seconds. This provides updated statistics since
the initial output. The statistics file used is /selinux/avc/cache_stats, and you can specify a
different cache file with the -f /path/to/file option.

48 Chapter 5. Working with SELinux

different cache file with the -f /path/to/file option.

~]# avcstat
 lookups hits misses allocs reclaims frees
 47517410 47504630 12780 12780 12176 12275

seinfo

This utility is useful in describing the break-down of a policy, such as the number of classes, types,
Booleans, allow rules, and others. seinfo is a command line utility that uses a policy.conf file (a single
text file containing policy source for versions 12 through 21), a binary policy file, a modular list of policy
packages, or a policy list file as input. You must have the setools-console package installed to use the
seinfo utility.

The output of seinfo will vary between binary and source files. For example, the policy source file uses
the { } brackets to group multiple rule elements onto a single line. A similar effect happens with
attributes, where a single attribute expands into one or many types. Because these are expanded and
no longer relevant in the binary policy file, they have a return value of zero in the search results.
However, the number of rules greatly increases as each formerly one line rule using brackets is now a
number of individual lines.

Some items are not present in the binary policy. For example, neverallow rules are only checked during
policy compile, not during runtime, and initial SIDs are not part of the binary policy since they are required
prior to the policy being loaded by the kernel during boot.

~]# seinfo

Statistics for policy file: /etc/selinux/targeted/policy/policy.24
Policy Version & Type: v.24 (binary, mls)

 Classes: 77 Permissions: 229
 Sensitivities: 1 Categories: 1024
 Types: 3001 Attributes: 244
 Users: 9 Roles: 13
 Booleans: 158 Cond. Expr.: 193
 Allow: 262796 Neverallow: 0
 Auditallow: 44 Dontaudit: 156710
 Type_trans: 10760 Type_change: 38
 Type_member: 44 Role allow: 20
 Role_trans: 237 Range_trans: 2546
 Constraints: 62 Validatetrans: 0
 Initial SIDs: 27 Fs_use: 22
 Genfscon: 82 Portcon: 373
 Netifcon: 0 Nodecon: 0
 Permissives: 22 Polcap: 2

The seinfo command can also list the number of types with the domain attribute, giving an estimate of
the number of different confined processes:

~]# seinfo -adomain -x | wc -l
550

Not all domain types are confined. To look at the number of unconfined domains, use the
unconfined_domain attribute:

~]# seinfo -aunconfined_domain_type -x | wc -l
52

Red Hat Enterprise Linux 6 Security-Enhanced Linux 49

Permissive domains can be counted with the --permissive option.

~]# seinfo --permissive -x | wc -l
31

Remove the | wc -l option in the above commands to see the full lists.

sesearch

You can use the sesearch command to search for a particular type in the policy. You can search either
policy source files or the binary file. For example:

~]$ sesearch --role_allow -t httpd_sys_content_t
/etc/selinux/targeted/policy/policy.24
Found 20 role allow rules:
 allow system_r sysadm_r;
 allow sysadm_r system_r;
 allow sysadm_r staff_r;
 allow sysadm_r user_r;
 allow system_r git_shell_r;
 allow system_r guest_r;
 allow logadm_r system_r;
 allow system_r logadm_r;
 allow system_r nx_server_r;
 allow system_r staff_r;
 allow staff_r logadm_r;
 allow staff_r sysadm_r;
 allow staff_r unconfined_r;
 allow staff_r webadm_r;
 allow unconfined_r system_r;
 allow system_r unconfined_r;
 allow system_r user_r;
 allow webadm_r system_r;
 allow system_r webadm_r;
 allow system_r xguest_r;

The sesearch command can provide the number of allow rules:

~]# sesearch --allow | wc -l
262798

And the number of dontaudit rules:

~]# sesearch --dontaudit | wc -l
156712

5.12. Multi-Level Security (MLS)
The Multi-Level Security technology refers to a security scheme that enforces the Bell-La Padula
Mandatory Access Model. Under MLS, users and processes are called subjects, and files, devices, and
other passive components of the system are called objects. Both subjects and objects are labeled with a
security level, which entails a subject's clearance or an object's classification. Each security level is
composed of a sensitivity and a category, for example, an internal release schedule is filed under the
internal documents category with a confidential sensitivity.

Figure 5.1, “Levels of clearance” shows levels of clearance as originally designed by the US defense
community. Relating to our internal schedule example above, only users that have gained the confidential

50 Chapter 5. Working with SELinux

clearance are allowed to view documents in the confidential category. However, users who only have the
confidential clearance are not allowed to view documents that require higher levels or clearance; they
are allowed read access only to documents with lower levels of clearance, and write access to
documents with higher levels of clearance.

Figure 5.1. Levels of clearance

Figure 5.2, “Allowed data flows using MLS” shows all allowed data flows between a subject running
under the "Secret" security level and various objects with different security levels. In simple terms, the
Bell-LaPadula model enforces two properties: no read up and no write down.

Figure 5.2. Allowed data flows using MLS

5.12.1. MLS and System Privileges

Red Hat Enterprise Linux 6 Security-Enhanced Linux 51

MLS access rules are always combined with conventional access permissions (file permissions). For
example, if a user with a security level of "Secret" uses Discretionary Access Control (DAC) to block
access to a file by other users, this also blocks access by users with a security level of "Top Secret". It
is important to remember that SELinux MLS policy rules are checked after DAC rules. A higher security
clearance does not automatically give permission to arbitrarily browse a file system.

Users with top-level clearances do not automatically acquire administrative rights on multi-level systems.
While they may have access to all information on the computer, this is different from having
administrative rights.

5.12.2. Enabling MLS in SELinux

Note

It is not recommended to use the MLS policy on a system that is running the X Window System.

Follow these steps to enable the SELinux MLS policy on your system.

1. Install the selinux-policy-mls package:

~]# yum install selinux-policy-mls

2. Before the MLS policy is enabled, each file on the file system must be relabeled with an MLS label.
When the file system is relabeled, confined domains may be denied access, which may prevent
your system from booting correctly. To prevent this from happening, configure
SELINUX=permissive in the /etc/selinux/config file. Also, enable the MLS policy by
configuring SELINUXTYPE=mls. Your configuration file should look like this:

This file controls the state of SELinux on the system.
SELINUX= can take one of these three values:
enforcing - SELinux security policy is enforced.
permissive - SELinux prints warnings instead of enforcing.
disabled - No SELinux policy is loaded.
SELINUX=permissive
SELINUXTYPE= can take one of these two values:
targeted - Targeted processes are protected,
mls - Multi Level Security protection.
SELINUXTYPE=mls

3. Make sure SELinux is running in the permissive mode:

~]# setenforce 0
~]# getenforce
Permissive

4. Create the .autorelabel file in root's home directory to ensure that files are relabeled upon
next reboot:

~]# touch /.autorelabel

5. Reboot your system. During the next boot, all file systems will be relabeled according to the MLS
policy. The label process labels all files with an appropriate SELinux context:

52 Chapter 5. Working with SELinux

*** Warning -- SELinux mls policy relabel is required.
*** Relabeling could take a very long time, depending on file
*** system size and speed of hard drives.

Each * (asterisk) character on the bottom line represents 1000 files that have been labeled. In the
above example, eleven * characters represent 11000 files which have been labeled. The time it
takes to label all files depends upon the number of files on the system, and the speed of the hard
disk drives. On modern systems, this process can take as little as 10 minutes. Once the labeling
process finishes, the system will automatically reboot.

6. In permissive mode, SELinux policy is not enforced, but denials are still logged for actions that
would have been denied if running in enforcing mode. Before changing to enforcing mode, as the
Linux root user, run the grep "SELinux is preventing" /var/log/messages command
to confirm that SELinux did not deny actions during the last boot. If SELinux did not deny actions
during the last boot, this command does not return any output. Refer to Chapter 8,
Troubleshooting for troubleshooting information if SELinux denied access during boot.

7. If there were no denial messages in /var/log/messages, or you have resolved all existing
denials, configure SELINUX=enforcing in the /etc/selinux/config file:

This file controls the state of SELinux on the system.
SELINUX= can take one of these three values:
enforcing - SELinux security policy is enforced.
permissive - SELinux prints warnings instead of enforcing.
disabled - No SELinux policy is loaded.
SELINUX=enforcing
SELINUXTYPE= can take one of these two values:
targeted - Targeted processes are protected,
mls - Multi Level Security protection.
SELINUXTYPE=mls

8. Reboot your system and make sure SELinux is running in permissive mode:

~]$ getenforce
Enforcing

and the MLS policy is enabled:

~]# ~]# sestatus |grep mls
Policy from config file: mls

5.12.3. Creating a User With a Specific MLS Range

Follow these steps to create a new Linux user with a specific MLS range:

1. Add a new Linux user via the useradd command and map the new Linux user to an existing
SELinux user (in this case, user_u):

~]# useradd -Z user_u john

2. Assign the newly-created Linux user a password:

~]# passwd john

3. Run the semanage login -l command to view the mapping between SELinux and Linux users.
The output should be as follows:

Red Hat Enterprise Linux 6 Security-Enhanced Linux 53

Login Name SELinux User MLS/MCS Range

__default__ user_u s0
john user_u s0
root root s0-s15:c0.c1023
system_u system_u s0-s15:c0.c1023

4. Define a specific range for user john:

~]# semanage login --modify --seuser user_u --range s2:c100 john

5. Run the semanage login -l command to view the mapping between SELinux and Linux users.
Note that the user john now has a specific MLS range defined:

Login Name SELinux User MLS/MCS Range

__default__ user_u s0
john user_u s2:c100
root root s0-s15:c0.c1023
system_u system_u s0-s15:c0.c1023

6. To correct the label on john's home directory (if needed), run the following command:

~]# chcon -R -l s2:c100 /home/john

5.12.4 . Sett ing Up Polyinstantiated Directories

The /tmp and /var/tmp directories are normally used for temporary storage by all programs, services,
and users. Such setup, however, makes these directories vulnerable to race condition attacks, or an
information leak based on file names. SELinux offers a solution in the form of polyinstantiated directories.
This effectively means that both /tmp and /var/tmp are instantiated, making them appear private for
each user. When instantiation of directories is enabled, each user's /tmp and /var/tmp directory is
automatically mounted under /tmp-inst and /var/tmp/tmp-inst.

Follow these steps to enable polyinstantiation of directories:

1. Uncomment the last three lines in the /etc/security/namespace.conf file to enable
instantiation of the /tmp, /var/tmp, and users' home directories:

~]$ tail -n 3 /etc/security/namespace.conf
/tmp /tmp-inst/ level root,adm
/var/tmp /var/tmp/tmp-inst/ level root,adm
$HOME $HOME/$USER.inst/ level

2. Ensure that in the /etc/pam.d/login file, the pam_namespace.so module is configured for
session:

~]$ grep namespace /etc/pam.d/login
session required pam_namespace.so

3. Reboot your system.

Brind le, Jo shua. " Re: b lurb fo r fed o ra seto o ls p ackag es" Email to Murray McAllis ter. 1 No vemb er 20 0 8 . Any ed its o r chang es in
this vers io n were d o ne b y Murray McAllis ter.

[8]

Files in /etc/selinux/targeted/contexts/files/ d efine co ntexts fo r fi les and d irecto ries. Files in this d irecto ry are read b y
restorecon and setfiles to resto re fi les and d irecto ries to their d efault co ntexts.

[9]

54 Chapter 5. Working with SELinux

Mo rris , James. " Filesystem Lab eling in SELinux" . Pub lished 1 Octo b er 20 0 4. Accessed 14 Octo b er 20 0 8 :
http ://www.linuxjo urnal.co m/artic le/7426 .

[10]

The matchp athco n(8) manual p ag e, as ship p ed with the libselinux-utils p ackag e in Red Hat Enterp rise Linux, is written b y Daniel
Walsh. Any ed its o r chang es in this vers io n were d o ne b y Murray McAllis ter.

[11]

Red Hat Enterprise Linux 6 Security-Enhanced Linux 55

http://www.linuxjournal.com/article/7426

Chapter 6. Confining Users
A number of confined SELinux users are available in Red Hat Enterprise Linux 6. Each Linux user is
mapped to an SELinux user via SELinux policy, allowing Linux users to inherit the restrictions placed on
SELinux users, for example (depending on the user), not being able to: run the X Window System; use
networking; run setuid applications (unless SELinux policy permits it); or run the su and sudo
commands. This helps protect the system from the user. Refer to Section 4.3, “Confined and Unconfined
Users” for further information about confined users.

6.1. Linux and SELinux User Mappings
As the Linux root user, run the semanage login -l command to view the mapping between Linux
users and SELinux users:

~]# semanage login -l

Login Name SELinux User MLS/MCS Range

__default__ unconfined_u s0-s0:c0.c1023
root unconfined_u s0-s0:c0.c1023
system_u system_u s0-s0:c0.c1023

In Red Hat Enterprise Linux 6, Linux users are mapped to the SELinux __default__ login by default
(which is in turn mapped to the SELinux unconfined_u user). When a Linux user is created with the
useradd command, if no options are specified, they are mapped to the SELinux unconfined_u user.
The following defines the default-mapping:

__default__ unconfined_u s0-s0:c0.c1023

6.2. Confining New Linux Users: useradd
Linux users mapped to the SELinux unconfined_u user run in the unconfined_t domain. This is
seen by running the id -Z command while logged-in as a Linux user mapped to unconfined_u:

~]$ id -Z
unconfined_u:unconfined_r:unconfined_t:s0-s0:c0.c1023

When Linux users run in the unconfined_t domain, SELinux policy rules are applied, but policy rules
exist that allow Linux users running in the unconfined_t domain almost all access. If unconfined Linux
users execute an application that SELinux policy defines can transition from the unconfined_t domain
to its own confined domain, unconfined Linux users are still subject to the restrictions of that confined
domain. The security benefit of this is that, even though a Linux user is running unconfined, the
application remains confined, and therefore, the exploitation of a flaw in the application can be limited by
policy. Note: this does not protect the system from the user. Instead, the user and the system are being
protected from possible damage caused by a flaw in the application.

When creating Linux users with useradd, use the -Z option to specify which SELinux user they are
mapped to. The following example creates a new Linux user, useruuser, and maps that user to the
SELinux user_u user. Linux users mapped to the SELinux user_u user run in the user_t domain. In
this domain, Linux users are unable to run setuid applications unless SELinux policy permits it (such as
passwd), and can not run su or sudo, preventing them from becoming the Linux root user with these
commands.

56 Chapter 6. Confining Users

1. As the Linux root user, run the useradd -Z user_u useruuser command to create a new
Linux user (useruuser) that is mapped to the SELinux user_u user.

2. As the Linux root user, run the semanage login -l command to view the mapping between the
Linux useruuser user and user_u:

~]# semanage login -l

Login Name SELinux User MLS/MCS Range

__default__ unconfined_u s0-s0:c0.c1023
root unconfined_u s0-s0:c0.c1023
system_u system_u s0-s0:c0.c1023
useruuser user_u s0

3. As the Linux root user, run the passwd useruuser command to assign a password to the Linux
useruuser user:

~]# passwd useruuser
Changing password for user useruuser.
New UNIX password: Enter a password
Retype new UNIX password: Enter the same password again
passwd: all authentication tokens updated successfully.

4. Log out of your current session, and log in as the Linux useruuser user. When you log in,
pam_selinux maps the Linux user to an SELinux user (in this case, user_u), and sets up the
resulting SELinux context. The Linux user's shell is then launched with this context. Run the id -
Z command to view the context of a Linux user:

~]$ id -Z
user_u:user_r:user_t:s0

5. Log out of the Linux useruuser's session, and log back in with your account. If you do not want the
Linux useruuser user, run the userdel -r useruuser command as the Linux root user to
remove it, along with its home directory.

6.3. Confining Existing Linux Users: semanage login
If a Linux user is mapped to the SELinux unconfined_u user (the default behavior), and you would like
to change which SELinux user they are mapped to, use the semanage login command. The following
example creates a new Linux user named newuser, then maps that Linux user to the SELinux user_u
user:

1. As the Linux root user, run the useradd newuser command to create a new Linux user
(newuser). Since this user uses the default mapping, it does not appear in the semanage login
-l output:

~]# useradd newuser
~]# semanage login -l

Login Name SELinux User MLS/MCS Range

__default__ unconfined_u s0-s0:c0.c1023
root unconfined_u s0-s0:c0.c1023
system_u system_u s0-s0:c0.c1023

2. To map the Linux newuser user to the SELinux user_u user, run the following command as the

Red Hat Enterprise Linux 6 Security-Enhanced Linux 57

Linux root user:

~]# semanage login -a -s user_u newuser

The -a option adds a new record, and the -s option specifies the SELinux user to map a Linux
user to. The last argument, newuser, is the Linux user you want mapped to the specified SELinux
user.

3. To view the mapping between the Linux newuser user and user_u, run the semanage login -
l command as the Linux root user:

~]# semanage login -l

Login Name SELinux User MLS/MCS Range

__default__ unconfined_u s0-s0:c0.c1023
newuser user_u s0
root unconfined_u s0-s0:c0.c1023
system_u system_u s0-s0:c0.c1023

4. As the Linux root user, run the passwd newuser command to assign a password to the Linux
newuser user:

~]# passwd newuser
Changing password for user newuser.
New password: Enter a password
Retype new password: Enter the same password again
passwd: all authentication tokens updated successfully.

5. Log out of your current session, and log in as the Linux newuser user. Run the id -Z command
to view the newuser's SELinux context:

~]$ id -Z
user_u:user_r:user_t:s0

6. Log out of the Linux newuser's session, and log back in with your account. If you do not want the
Linux newuser user, run the userdel -r newuser command as the Linux root user to remove it,
along with its home directory. Run the semanage login -d newuser command to remove the
mapping between the Linux newuser user and user_u:

~]# userdel -r newuser
~]# semanage login -d newuser
~]# semanage login -l

Login Name SELinux User MLS/MCS Range

__default__ unconfined_u s0-s0:c0.c1023
root unconfined_u s0-s0:c0.c1023
system_u system_u s0-s0:c0.c1023

6.4. Changing the Default Mapping
In Red Hat Enterprise Linux 6, Linux users are mapped to the SELinux __default__ login by default
(which is in turn mapped to the SELinux unconfined_u user). If you would like new Linux users, and
Linux users not specifically mapped to an SELinux user to be confined by default, change the default
mapping with the semanage login command.

For example, run the following command as the Linux root user to change the default mapping from

58 Chapter 6. Confining Users

unconfined_u to user_u:

~]# semanage login -m -S targeted -s "user_u" -r s0 __default__

Run the semanage login -l command as the Linux root user to verify the __default__ login is
mapped to user_u:

~]# semanage login -l

Login Name SELinux User MLS/MCS Range

__default__ user_u s0
root unconfined_u s0-s0:c0.c1023
system_u system_u s0-s0:c0.c1023

If a new Linux user is created and an SELinux user is not specified, or if an existing Linux user logs in
and does not match a specific entry from the semanage login -l output, they are mapped to
user_u, as per the __default__ login.

To change back to the default behavior, run the following command as the Linux root user to map the
__default__ login to the SELinux unconfined_u user:

~]# semanage login -m -S targeted -s "unconfined_u" -r s0-s0:c0.c1023
__default__

6.5. xguest: Kiosk Mode
The xguest package provides a kiosk user account. This account is used to secure machines that
people walk up to and use, such as those at libraries, banks, airports, information kiosks, and coffee
shops. The kiosk user account is very limited: essentially, it only allows users to log in and use Firefox
to browse Internet websites. Any changes made while logged in with his account, such as creating files
or changing settings, are lost when you log out.

To set up the kiosk account:

1. As the Linux root user, run yum install xguest command to install the xguest package. Install
dependencies as required.

2. In order to allow the kiosk account to be used by a variety of people, the account is not password-
protected, and as such, the account can only be protected if SELinux is running in enforcing mode.
Before logging in with this account, use the getenforce command to confirm that SELinux is
running in enforcing mode:

~]$ getenforce
Enforcing

If this is not the case, refer to Section 5.5, “SELinux Modes” for information about changing to
enforcing mode. It is not possible to log in with this account if SELinux is in permissive mode or
disabled.

3. You can only log in to this account via the GNOME Display Manager (GDM). Once the xguest
package is installed, a Guest account is added to the GDM login screen.

6.6. Booleans for Users Executing Applications
Not allowing Linux users to execute applications (which inherit users' permissions) in their home

Red Hat Enterprise Linux 6 Security-Enhanced Linux 59

directories and /tmp/, which they have write access to, helps prevent flawed or malicious applications
from modifying files that users own. In Red Hat Enterprise Linux 6, by default, Linux users in the
guest_t and xguest_t domains can not execute applications in their home directories or /tmp/;
however, by default, Linux users in the user_t and staff_t domains can.

Booleans are available to change this behavior, and are configured with the setsebool command. The
setsebool command must be run as the Linux root user. The setsebool -P command makes
persistent changes. Do not use the -P option if you do not want changes to persist across reboots:

guest_t

To allow Linux users in the guest_t domain to execute applications in their home directories and
/tmp/:

~]# setsebool -P allow_guest_exec_content on

xguest_t

To allow Linux users in the xguest_t domain to execute applications in their home directories and
/tmp/:

~]# setsebool -P allow_xguest_exec_content on

user_t

To prevent Linux users in the user_t domain from executing applications in their home directories and
/tmp/:

~]# setsebool -P allow_user_exec_content off

staff_t

To prevent Linux users in the staff_t domain from executing applications in their home directories and
/tmp/:

~]# setsebool -P allow_staff_exec_content off

60 Chapter 6. Confining Users

Chapter 7. sVirt
sVirt is a technology included in Red Hat Enterprise Linux 6 that integrates SELinux and virtualization.
sVirt applies Mandatory Access Control (MAC) to improve security when using virtual machines. The
main reasons for integrating these technologies are to improve security and harden the system against
bugs in the hypervisor that might be used as an attack vector aimed toward the host or to another virtual
machine.

This chapter describes how sVirt integrates with virtualization technologies in Red Hat Enterprise Linux
6.

Non-Virtualized Environment

In a non-virtualized environment, hosts are separated from each other physically and each host has a
self-contained environment, consisting of services such as a Web server, or a DNS server. These
services communicate directly to their own user space, host kernel and physical host, offering their
services directly to the network. The following image represents a non-virtualized environment:

Virtualized Environment

In a virtualized environment, several operating systems can be housed (as "guests") within a single
host kernel and physical host. The following image represents a virtualized environment:

7.1. Security and Virtualization
When services are not virtualized, machines are physically separated. Any exploit is usually contained to
the affected machine, with the obvious exception of network attacks. When services are grouped
together in a virtualized environment, extra vulnerabilities emerge in the system. If there is a security flaw

Red Hat Enterprise Linux 6 Security-Enhanced Linux 61

in the hypervisor that can be exploited by a guest instance, this guest may be able to not only attack the
host, but also other guests running on that host. This is not theoretical; attacks already exist on
hypervisors. These attacks can extend beyond the guest instance and could expose other guests to
attack.

sVirt is an effort to isolate guests and limit their ability to launch further attacks if exploited. This is
demonstrated in the following image, where an attack can not break out of the virtual machine and
extend to another host instance:

SELinux introduces a pluggable security framework for virtualized instances in its implementation of
Mandatory Access Control (MAC). The sVirt framework allows guests and their resources to be uniquely
labeled. Once labeled, rules can be applied which can reject access between different guests.

7.2. sVirt Labeling
Like other services under the protection of SELinux, sVirt uses process-based mechanisms and
restrictions to provide an extra layer of security over guest instances. Under typical use, you should not
even notice that sVirt is working in the background. This section describes the labeling features of sVirt.

As shown in the following output, when using sVirt, each Virtual Machine (VM) process is labeled and
runs with a dynamically generated level. Each process is isolated from other VMs with different levels:

~]# ps -eZ | grep qemu

system_u:system_r:svirt_t:s0:c87,c520 27950 ? 00:00:17 qemu-kvm
system_u:system_r:svirt_t:s0:c639,c757 27989 ? 00:00:06 qemu-system-x86

The actual disk images are automatically labeled to match the processes, as shown in the following
output:

~]# ls -lZ /var/lib/libvirt/images/*

system_u:object_r:svirt_image_t:s0:c87,c520 image1

The following table outlines the different labels that can be assigned when using sVirt:

62 Chapter 7. sVirt

Table 7.1. sVirt Labels
Type SELinux Context Description

Virtual Machine Processes system_u:system_r:svirt_t:MCS1 MCS1 is a randomly selected
MCS field. Currently
approximately 500,000 labels
are supported.

Virtual Machine Image system_u:object_r:svirt_image_t:MCS1 Only svirt_t processes with
the same MCS fields are able
to read/write these image files
and devices.

Virtual Machine Shared
Read/Write Content

system_u:object_r:svirt_image_t:s0 All svirt_t processes are
allowed to write to the
svirt_image_t:s0 files and
devices.

Virtual Machine Shared
Shared Read Only content

system_u:object_r:svirt_content_t:s0 All svirt_t processes are able
to read files/devices with this
label.

Virtual Machine Image system_u:object_r:virt_content_t:s0 System default label used
when an image exits. No
svirt_t virtual processes are
allowed to read files/devices
with this label.

It is also possible to perform static labeling when using sVirt. Static labels allow the administrator to
select a specific label, including the MCS/MLS field, for a virtual machine. Administrators who run
statically-labeled virtual machines are responsible for setting the correct label on the image files. The
virtual machine will always be started with that label, and the sVirt system will never modify the label of a
statically-labeled virtual machine's content. This allows the sVirt component to run in an MLS
environment. You can also run multiple virtual machines with different sensitivity levels on a system,
depending on your requirements.

Red Hat Enterprise Linux 6 Security-Enhanced Linux 63

Chapter 8. Troubleshooting
The following chapter describes what happens when SELinux denies access; the top three causes of
problems; where to find information about correct labeling; analyzing SELinux denials; and creating
custom policy modules with audit2allow.

8.1. What Happens when Access is Denied
SELinux decisions, such as allowing or disallowing access, are cached. This cache is known as the
Access Vector Cache (AVC). Denial messages are logged when SELinux denies access. These denials
are also known as "AVC denials", and are logged to a different location, depending on which daemons
are running:

Daemon Log Location

auditd on /var/log/audit/audit.log

auditd off; rsyslogd on /var/log/messages

setroubleshootd, rsyslogd,
and auditd on

/var/log/audit/audit.log. Easier-to-read denial messages also
sent to /var/log/messages

If you are running the X Window System, have the setroubleshoot and setroubleshoot-server packages
installed, and the setroubleshootd and auditd daemons are running, a warning is displayed when
access is denied by SELinux:

Clicking on 'Show' presents a detailed analysis of why SELinux denied access, and a possible solution
for allowing access. If you are not running the X Window System, it is less obvious when access is
denied by SELinux. For example, users browsing your website may receive an error similar to the
following:

Forbidden

You don't have permission to access file name on this server

For these situations, if DAC rules (standard Linux permissions) allow access, check
/var/log/messages and /var/log/audit/audit.log for "SELinux is preventing" and
"denied" errors respectively. This can be done by running the following commands as the Linux root
user:

~]# grep "SELinux is preventing" /var/log/messages

~]# grep "denied" /var/log/audit/audit.log

8.2. Top Three Causes of Problems

64 Chapter 8. Troubleshooting

The following sections describe the top three causes of problems: labeling problems, configuring
Booleans and ports for services, and evolving SELinux rules.

8.2.1. Labeling Problems

On systems running SELinux, all processes and files are labeled with a label that contains security-
relevant information. This information is called the SELinux context. If these labels are wrong, access
may be denied. If an application is labeled incorrectly, the process it transitions to may not have the
correct label, possibly causing SELinux to deny access, and the process being able to create mislabeled
files.

A common cause of labeling problems is when a non-standard directory is used for a service. For
example, instead of using /var/www/html/ for a website, an administrator wants to use
/srv/myweb/. On Red Hat Enterprise Linux 6, the /srv/ directory is labeled with the var_t type. Files
and directories created and /srv/ inherit this type. Also, newly-created top-level directories (such as
/myserver/) may be labeled with the default_t type. SELinux prevents the Apache HTTP Server
(httpd) from accessing both of these types. To allow access, SELinux must know that the files in
/srv/myweb/ are to be accessible to httpd:

~]# semanage fcontext -a -t httpd_sys_content_t "/srv/myweb(/.*)?"

This semanage command adds the context for the /srv/myweb/ directory (and all files and directories

under it) to the SELinux file-context configuration[]. The semanage command does not change the
context. As the Linux root user, run the restorecon command to apply the changes:

~]# restorecon -R -v /srv/myweb

Refer to Section 5.7.2, “Persistent Changes: semanage fcontext” for further information about adding
contexts to the file-context configuration.

8.2.1.1. What is the Correct Context?

The matchpathcon command checks the context of a file path and compares it to the default label for
that path. The following example demonstrates using matchpathcon on a directory that contains
incorrectly labeled files:

~]$ matchpathcon -V /var/www/html/*
/var/www/html/index.html has context unconfined_u:object_r:user_home_t:s0, should
be system_u:object_r:httpd_sys_content_t:s0
/var/www/html/page1.html has context unconfined_u:object_r:user_home_t:s0, should
be system_u:object_r:httpd_sys_content_t:s0

In this example, the index.html and page1.html files are labeled with the user_home_t type. This
type is used for files in user home directories. Using the mv command to move files from your home
directory may result in files being labeled with the user_home_t type. This type should not exist
outside of home directories. Use the restorecon command to restore such files to their correct type:

~]# restorecon -v /var/www/html/index.html
restorecon reset /var/www/html/index.html context
unconfined_u:object_r:user_home_t:s0->system_u:object_r:httpd_sys_content_t:s0

To restore the context for all files under a directory, use the -R option:

12

Red Hat Enterprise Linux 6 Security-Enhanced Linux 65

~]# restorecon -R -v /var/www/html/
restorecon reset /var/www/html/page1.html context
unconfined_u:object_r:samba_share_t:s0->system_u:object_r:httpd_sys_content_t:s0
restorecon reset /var/www/html/index.html context
unconfined_u:object_r:samba_share_t:s0->system_u:object_r:httpd_sys_content_t:s0

Refer to Section 5.10.3, “Checking the Default SELinux Context” for a more detailed example of
matchpathcon.

8.2.2. How are Confined Services Running?

Services can be run in a variety of ways. To cater for this, you must tell SELinux how you are running
services. This can be achieved via Booleans that allow parts of SELinux policy to be changed at runtime,
without any knowledge of SELinux policy writing. This allows changes, such as allowing services access
to NFS file systems, without reloading or recompiling SELinux policy. Also, running services on non-
default port numbers requires policy configuration to be updated via the semanage command.

For example, to allow the Apache HTTP Server to communicate with MySQL, turn the
httpd_can_network_connect_db Boolean on:

~]# setsebool -P httpd_can_network_connect_db on

If access is denied for a particular service, use the getsebool and grep commands to see if any
Booleans are available to allow access. For example, use the getsebool -a | grep ftp command
to search for FTP related Booleans:

~]$ getsebool -a | grep ftp
allow_ftpd_anon_write --> off
allow_ftpd_full_access --> off
allow_ftpd_use_cifs --> off
allow_ftpd_use_nfs --> off
ftp_home_dir --> off
ftpd_connect_db --> off
httpd_enable_ftp_server --> off
tftp_anon_write --> off

For a list of Booleans and whether they are on or off, run the getsebool -a command. For a list of
Booleans, an explanation of what each one is, and whether they are on or off, run the semanage
boolean -l command as the Linux root user. Refer to Section 5.6, “Booleans” for information about
listing and configuring Booleans.

Port Numbers

Depending on policy configuration, services may only be allowed to run on certain port numbers.
Attempting to change the port a service runs on without changing policy may result in the service failing
to start. For example, run the semanage port -l | grep http command as the Linux root user to
list http related ports:

~]# semanage port -l | grep http
http_cache_port_t tcp 3128, 8080, 8118
http_cache_port_t udp 3130
http_port_t tcp 80, 443, 488, 8008, 8009, 8443
pegasus_http_port_t tcp 5988
pegasus_https_port_t tcp 5989

The http_port_t port type defines the ports Apache HTTP Server can listen on, which in this case,

66 Chapter 8. Troubleshooting

are TCP ports 80, 443, 488, 8008, 8009, and 8443. If an administrator configures httpd.conf so that
httpd listens on port 9876 (Listen 9876), but policy is not updated to reflect this, the service
httpd start command fails:

~]# service httpd start
Starting httpd: (13)Permission denied: make_sock: could not bind to address
[::]:9876
(13)Permission denied: make_sock: could not bind to address 0.0.0.0:9876
no listening sockets available, shutting down
Unable to open logs
 [FAILED]

An SELinux denial similar to the following is logged to /var/log/audit/audit.log:

type=AVC msg=audit(1225948455.061:294): avc: denied { name_bind } for pid=4997
comm="httpd" src=9876 scontext=unconfined_u:system_r:httpd_t:s0
tcontext=system_u:object_r:port_t:s0 tclass=tcp_socket

To allow httpd to listen on a port that is not listed for the http_port_t port type, run the semanage

port command to add a port to policy configuration[]:

~]# semanage port -a -t http_port_t -p tcp 9876

The -a option adds a new record; the -t option defines a type; and the -p option defines a protocol.
The last argument is the port number to add.

8.2.3. Evolving Rules and Broken Applications

Applications may be broken, causing SELinux to deny access. Also, SELinux rules are evolving - SELinux
may not have seen an application running in a certain way, possibly causing it to deny access, even
though the application is working as expected. For example, if a new version of PostgreSQL is released,
it may perform actions the current policy has not seen before, causing access to be denied, even though
access should be allowed.

For these situations, after access is denied, use audit2allow to create a custom policy module to
allow access. Refer to Section 8.3.8, “Allowing Access: audit2allow” for information about using
audit2allow.

8.3. Fixing Problems
The following sections help troubleshoot issues. They go over: checking Linux permissions, which are
checked before SELinux rules; possible causes of SELinux denying access, but no denials being logged;
manual pages for services, which contain information about labeling and Booleans; permissive domains,
for allowing one process to run permissive, rather than the whole system; how to search for and view
denial messages; analyzing denials; and creating custom policy modules with audit2allow.

8.3.1. Linux Permissions

When access is denied, check standard Linux permissions. As mentioned in Chapter 2, Introduction,
most operating systems use a Discretionary Access Control (DAC) system to control access, allowing
users to control the permissions of files that they own. SELinux policy rules are checked after DAC rules.
SELinux policy rules are not used if DAC rules deny access first.

If access is denied and no SELinux denials are logged, use the ls -l command to view the standard
Linux permissions:

13

Red Hat Enterprise Linux 6 Security-Enhanced Linux 67

~]$ ls -l /var/www/html/index.html
-rw-r----- 1 root root 0 2009-05-07 11:06 index.html

In this example, index.html is owned by the root user and group. The root user has read and write
permissions (-rw), and members of the root group have read permissions (-r-). Everyone else has no
access (---). By default, such permissions do not allow httpd to read this file. To resolve this issue,
use the chown command to change the owner and group. This command must be run as the Linux root
user:

~]# chown apache:apache /var/www/html/index.html

This assumes the default configuration, in which httpd runs as the Linux apache user. If you run
httpd with a different user, replace apache:apache with that user.

Refer to the Fedora Documentation Project "Permissions" draft for information about managing Linux
permissions.

8.3.2. Possible Causes of Silent Denials

In certain situations, AVC denials may not be logged when SELinux denies access. Applications and
system library functions often probe for more access than required to perform their tasks. To maintain
least privilege without filling audit logs with AVC denials for harmless application probing, the policy can
silence AVC denials without allowing a permission by using dontaudit rules. These rules are common
in standard policy. The downside of dontaudit is that, although SELinux denies access, denial
messages are not logged, making troubleshooting hard.

To temporarily disable dontaudit rules, allowing all denials to be logged, run the following command
as the Linux root user:

~]# semodule -DB

The -D option disables dontaudit rules; the -B option rebuilds policy. After running semodule -DB,
try exercising the application that was encountering permission problems, and see if SELinux denials —
relevant to the application — are now being logged. Take care in deciding which denials should be
allowed, as some should be ignored and handled via dontaudit rules. If in doubt, or in search of
guidance, contact other SELinux users and developers on an SELinux list, such as fedora-selinux-list.

To rebuild policy and enable dontaudit rules, run the following command as the Linux root user:

~]# semodule -B

This restores the policy to its original state. For a full list of dontaudit rules, run the sesearch --
dontaudit command. Narrow down searches using the -s domain option and the grep command.
For example:

~]$ sesearch --dontaudit -s smbd_t | grep squid
dontaudit smbd_t squid_port_t : tcp_socket name_bind ;
dontaudit smbd_t squid_port_t : udp_socket name_bind ;

Refer to Section 8.3.6, “Raw Audit Messages” and Section 8.3.7, “sealert Messages” for information
about analyzing denials.

8.3.3. Manual Pages for Services

Manual pages for services contain valuable information, such as what file type to use for a given

68 Chapter 8. Troubleshooting

http://fedoraproject.org/wiki/Docs/Drafts/AdministrationGuide/Permissions
http://www.redhat.com/mailman/listinfo/fedora-selinux-list

situation, and Booleans to change the access a service has (such as httpd accessing NFS file
systems). This information may be in the standard manual page, or a manual page with selinux
prepended or appended.

For example, the httpd_selinux(8) manual page has information about what file type to use for a given
situation, as well as Booleans to allow scripts, sharing files, accessing directories inside user home
directories, and so on. Other manual pages with SELinux information for services include:

Samba: the samba_selinux(8) manual page describes that files and directories to be exported via
Samba must be labeled with the samba_share_t type, as well as Booleans to allow files labeled
with types other than samba_share_t to be exported via Samba.

NFS: the nfs_selinux(8) manual page describes that, by default, file systems can not be exported via
NFS, and that to allow file systems to be exported, Booleans such as nfs_export_all_ro or
nfs_export_all_rw must be turned on.

Berkeley Internet Name Domain (BIND): the named(8) manual page describes what file type to use
for a given situation (see the Red Hat SELinux BIND Security Profile section). The
named_selinux(8) manual page describes that, by default, named can not write to master zone files,
and to allow such access, the named_write_master_zones Boolean must be turned on.

The information in manual pages helps you configure the correct file types and Booleans, helping to
prevent SELinux from denying access.

8.3.4 . Permissive Domains

When SELinux is running in permissive mode, SELinux does not deny access, but denials are logged for
actions that would have been denied if running in enforcing mode. Previously, it was not possible to
make a single domain permissive (remember: processes run in domains). In certain situations, this led to
making the whole system permissive to troubleshoot issues.

In Red Hat Enterprise Linux 4 and 5, domain_disable_trans Booleans are available to prevent an
application from transitioning to a confined domain, and therefore, the process runs in an unconfined
domain, such as initrc_t. Consequently, turning such Booleans on can cause major problems. For
example, the following happens if the httpd_disable_trans Boolean is turned on:

The httpd service runs in the unconfined initrc_t domain. Files created by processes running in
the initrc_t domain may not have the same labeling rules applied as files created by a process
running in the httpd_t domain, potentially allowing processes to create mislabeled files. This
causes access problems later on.

Confined domains that are allowed to communicate with httpd_t can not communicate with
initrc_t, possibly causing additional failures.

To address these issues, Red Hat Enterprise Linux 6 introduces permissive domains. Permissive
domains allow an administrator to configure a single process (domain) to run permissive, rather than
making the whole system permissive. SELinux checks are still performed for permissive domains;
however, the kernel allows access and reports an AVC denial for situations where SELinux would have
denied access.

Permissive domains have the following uses:

They can be used for making a single process (domain) run permissive to troubleshoot an issue
without putting the entire system at risk by making it permissive.

They allow an administrator to create policies for new applications. Previously, it was recommended
that a minimal policy be created, and then the entire machine put into permissive mode, so that the
application could run, but SELinux denials still logged. audit2allow could then be used to help
write the policy. This put the whole system at risk. With permissive domains, only the domain in the
new policy can be marked permissive, without putting the whole system at risk.

Red Hat Enterprise Linux 6 Security-Enhanced Linux 69

8.3.4 .1. Making a Domain Permissive

To make a domain permissive, run the semanage permissive -a domain command, where domain
is the domain you want to make permissive. For example, run the following command as the Linux root
user to make the httpd_t domain (the domain the Apache HTTP Server runs in) permissive:

~]# semanage permissive -a httpd_t

To view a list of domains you have made permissive, run the semodule -l | grep permissive
command as the Linux root user. For example:

~]# semodule -l | grep permissive
permissive_httpd_t 1.0
permissivedomains 1.0.0

If you no longer want a domain to be permissive, run the semanage permissive -d domain
command as the Linux root user. For example:

~]# semanage permissive -d httpd_t

8.3.4 .2. Denials for Permissive Domains

The SYSCALL message is different for permissive domains. The following is an example AVC denial
(and the associated system call) from the Apache HTTP Server:

type=AVC msg=audit(1226882736.442:86): avc: denied { getattr } for pid=2427
comm="httpd" path="/var/www/html/file1" dev=dm-0 ino=284133
scontext=unconfined_u:system_r:httpd_t:s0
tcontext=unconfined_u:object_r:samba_share_t:s0 tclass=file

type=SYSCALL msg=audit(1226882736.442:86): arch=40000003 syscall=196 success=no
exit=-13 a0=b9a1e198 a1=bfc2921c a2=54dff4 a3=2008171 items=0 ppid=2425 pid=2427
auid=502 uid=48 gid=48 euid=48 suid=48 fsuid=48 egid=48 sgid=48 fsgid=48
tty=(none) ses=4 comm="httpd" exe="/usr/sbin/httpd"
subj=unconfined_u:system_r:httpd_t:s0 key=(null)

By default, the httpd_t domain is not permissive, and as such, the action is denied, and the SYSCALL
message contains success=no. The following is an example AVC denial for the same situation, except
the semanage permissive -a httpd_t command has been run to make the httpd_t domain
permissive:

type=AVC msg=audit(1226882925.714:136): avc: denied { read } for pid=2512
comm="httpd" name="file1" dev=dm-0 ino=284133
scontext=unconfined_u:system_r:httpd_t:s0
tcontext=unconfined_u:object_r:samba_share_t:s0 tclass=file

type=SYSCALL msg=audit(1226882925.714:136): arch=40000003 syscall=5 success=yes
exit=11 a0=b962a1e8 a1=8000 a2=0 a3=8000 items=0 ppid=2511 pid=2512 auid=502
uid=48 gid=48 euid=48 suid=48 fsuid=48 egid=48 sgid=48 fsgid=48 tty=(none) ses=4
comm="httpd" exe="/usr/sbin/httpd" subj=unconfined_u:system_r:httpd_t:s0 key=(null)

In this case, although an AVC denial was logged, access was not denied, as shown by success=yes in
the SYSCALL message.

Refer to Dan Walsh's "Permissive Domains" blog entry for further information about permissive domains.

70 Chapter 8. Troubleshooting

http://danwalsh.livejournal.com/24537.html

8.3.5. Searching For and Viewing Denials

This section assumes the setroubleshoot, setroubleshoot-server, dbus and audit packages are installed,
and that the auditd, rsyslogd, and setroubleshootd daemons are running. Refer to Section 5.2,
“Which Log File is Used” for information about starting these daemons. A number of tools are available
for searching for and viewing SELinux denials, such as ausearch, aureport, and sealert.

ausearch

The audit package provides ausearch. From the ausearch(8) manual page: "ausearch is a tool that

can query the audit daemon logs based for events based on different search criteria" []. The
ausearch tool accesses /var/log/audit/audit.log, and as such, must be run as the Linux root
user:

Searching For Command

all denials ausearch -m avc

denials for that today ausearch -m avc -ts today

denials from the last 10 minutes ausearch -m avc -ts recent

To search for SELinux denials for a particular service, use the -c comm-name option, where comm-name

"is the executable’s name" [], for example, httpd for the Apache HTTP Server, and smbd for Samba:

~]# ausearch -m avc -c httpd

~]# ausearch -m avc -c smbd

Refer to the ausearch(8) manual page for further ausearch options.

aureport

The audit package provides aureport. From the aureport(8) manual page: "aureport is a tool that

produces summary reports of the audit system logs" []. The aureport tool accesses
/var/log/audit/audit.log, and as such, must be run as the Linux root user. To view a list of
SELinux denials and how often each one occurred, run the aureport -a command. The following is
example output that includes two denials:

~]# aureport -a

AVC Report
==
date time comm subj syscall class permission obj event
==
1. 05/01/2009 21:41:39 httpd unconfined_u:system_r:httpd_t:s0 195 file getattr
system_u:object_r:samba_share_t:s0 denied 2
2. 05/03/2009 22:00:25 vsftpd unconfined_u:system_r:ftpd_t:s0 5 file read
unconfined_u:object_r:cifs_t:s0 denied 4

Refer to the aureport(8) manual page for further aureport options.

sealert

The setroubleshoot-server package provides sealert, which reads denial messages translated by
setroubleshoot-server. Denials are assigned IDs, as seen in /var/log/messages. The following is an

14

15

16

Red Hat Enterprise Linux 6 Security-Enhanced Linux 71

example denial from messages:

setroubleshoot: SELinux is preventing httpd (httpd_t) "getattr" to
/var/www/html/file1 (samba_share_t). For complete SELinux messages. run sealert -l
84e0b04d-d0ad-4347-8317-22e74f6cd020

In this example, the denial ID is 84e0b04d-d0ad-4347-8317-22e74f6cd020. The -l option takes
an ID as an argument. Running the sealert -l 84e0b04d-d0ad-4347-8317-22e74f6cd020
command presents a detailed analysis of why SELinux denied access, and a possible solution for
allowing access.

If you are running the X Window System, have the setroubleshoot and setroubleshoot-server packages
installed, and the setroubleshootd, dbus and auditd daemons are running, a warning is displayed
when access is denied by SELinux. Clicking on 'Show' launches the sealert GUI, and displays denials
in HTML output:

Run the sealert -b command to launch the sealert GUI.

Run the sealert -l * command to view a detailed analysis of all denials.

As the Linux root user, run the sealert -a /var/log/audit/audit.log -H > audit.html
command to create a HTML version of the sealert analysis, as seen with the sealert GUI.

Refer to the sealert(8) manual page for further sealert options.

8.3.6. Raw Audit Messages

Raw audit messages are logged to /var/log/audit/audit.log. The following is an example AVC
denial (and the associated system call) that occurred when the Apache HTTP Server (running in the
httpd_t domain) attempted to access the /var/www/html/file1 file (labeled with the
samba_share_t type):

type=AVC msg=audit(1226874073.147:96): avc: denied { getattr } for pid=2465
comm="httpd" path="/var/www/html/file1" dev=dm-0 ino=284133
scontext=unconfined_u:system_r:httpd_t:s0
tcontext=unconfined_u:object_r:samba_share_t:s0 tclass=file

type=SYSCALL msg=audit(1226874073.147:96): arch=40000003 syscall=196 success=no
exit=-13 a0=b98df198 a1=bfec85dc a2=54dff4 a3=2008171 items=0 ppid=2463 pid=2465
auid=502 uid=48 gid=48 euid=48 suid=48 fsuid=48 egid=48 sgid=48 fsgid=48
tty=(none) ses=6 comm="httpd" exe="/usr/sbin/httpd"
subj=unconfined_u:system_r:httpd_t:s0 key=(null)

72 Chapter 8. Troubleshooting

{ getattr }

The item in braces indicates the permission that was denied. getattr indicates the source
process was trying to read the target file's status information. This occurs before reading files.
This action is denied due to the file being accessed having the wrong label. Commonly seen
permissions include getattr, read, and write.

comm="httpd"

The executable that launched the process. The full path of the executable is found in the exe=
section of the system call (SYSCALL) message, which in this case, is
exe="/usr/sbin/httpd".

path="/var/www/html/file1"

The path to the object (target) the process attempted to access.

scontext="unconfined_u:system_r:httpd_t:s0"

The SELinux context of the process that attempted the denied action. In this case, it is the
SELinux context of the Apache HTTP Server, which is running in the httpd_t domain.

tcontext="unconfined_u:object_r:samba_share_t:s0"

The SELinux context of the object (target) the process attempted to access. In this case, it is
the SELinux context of file1. Note: the samba_share_t type is not accessible to processes
running in the httpd_t domain.

In certain situations, the tcontext may match the scontext, for example, when a process
attempts to execute a system service that will change characteristics of that running process,
such as the user ID. Also, the tcontext may match the scontext when a process tries to
use more resources (such as memory) than normal limits allow, resulting in a security check to
see if that process is allowed to break those limits.

From the system call (SYSCALL) message, two items are of interest:

success=no: indicates whether the denial (AVC) was enforced or not. success=no indicates the
system call was not successful (SELinux denied access). success=yes indicates the system call
was successful - this can be seen for permissive domains or unconfined domains, such as
initrc_t and kernel_t.

exe="/usr/sbin/httpd": the full path to the executable that launched the process, which in this
case, is exe="/usr/sbin/httpd".

An incorrect file type is a common cause for SELinux denying access. To start troubleshooting, compare
the source context (scontext) with the target context (tcontext). Should the process (scontext) be
accessing such an object (tcontext)? For example, the Apache HTTP Server (httpd_t) should only
be accessing types specified in the httpd_selinux(8) manual page, such as httpd_sys_content_t,
public_content_t, and so on, unless configured otherwise.

8.3.7. sealert Messages

Denials are assigned IDs, as seen in /var/log/messages. The following is an example AVC denial

Red Hat Enterprise Linux 6 Security-Enhanced Linux 73

(logged to messages) that occurred when the Apache HTTP Server (running in the httpd_t domain)
attempted to access the /var/www/html/file1 file (labeled with the samba_share_t type):

hostname setroubleshoot: SELinux is preventing httpd (httpd_t) "getattr" to
/var/www/html/file1 (samba_share_t). For complete SELinux messages. run sealert -l
84e0b04d-d0ad-4347-8317-22e74f6cd020

As suggested, run the sealert -l 84e0b04d-d0ad-4347-8317-22e74f6cd020 command to
view the complete message. This command only works on the local machine, and presents the same
information as the sealert GUI:

74 Chapter 8. Troubleshooting

~]$ sealert -l 84e0b04d-d0ad-4347-8317-22e74f6cd020

Summary:

SELinux is preventing httpd (httpd_t) "getattr" to /var/www/html/file1
(samba_share_t).

Detailed Description:

SELinux denied access to /var/www/html/file1 requested by httpd.
/var/www/html/file1 has a context used for sharing by different program. If you
would like to share /var/www/html/file1 from httpd also, you need to change its
file context to public_content_t. If you did not intend to this access, this
could signal a intrusion attempt.

Allowing Access:

You can alter the file context by executing chcon -t public_content_t
'/var/www/html/file1'

Fix Command:

chcon -t public_content_t '/var/www/html/file1'

Additional Information:

Source Context unconfined_u:system_r:httpd_t:s0
Target Context unconfined_u:object_r:samba_share_t:s0
Target Objects /var/www/html/file1 [file]
Source httpd
Source Path /usr/sbin/httpd
Port <Unknown>
Host hostname
Source RPM Packages httpd-2.2.10-2
Target RPM Packages
Policy RPM selinux-policy-3.5.13-11.fc12
Selinux Enabled True
Policy Type targeted
MLS Enabled True
Enforcing Mode Enforcing
Plugin Name public_content
Host Name hostname
Platform Linux hostname 2.6.27.4-68.fc12.i686 #1 SMP Thu
Oct
30 00:49:42 EDT 2008 i686 i686
Alert Count 4
First Seen Wed Nov 5 18:53:05 2008
Last Seen Wed Nov 5 01:22:58 2008
Local ID 84e0b04d-d0ad-4347-8317-22e74f6cd020
Line Numbers

Raw Audit Messages

node=hostname type=AVC msg=audit(1225812178.788:101): avc: denied { getattr }
for pid=2441 comm="httpd" path="/var/www/html/file1" dev=dm-0 ino=284916
scontext=unconfined_u:system_r:httpd_t:s0
tcontext=unconfined_u:object_r:samba_share_t:s0 tclass=file

node=hostname type=SYSCALL msg=audit(1225812178.788:101): arch=40000003
syscall=196 success=no exit=-13 a0=b8e97188 a1=bf87aaac a2=54dff4 a3=2008171
items=0 ppid=2439 pid=2441 auid=502 uid=48 gid=48 euid=48 suid=48 fsuid=48
egid=48 sgid=48 fsgid=48 tty=(none) ses=3 comm="httpd" exe="/usr/sbin/httpd"

Red Hat Enterprise Linux 6 Security-Enhanced Linux 75

subj=unconfined_u:system_r:httpd_t:s0 key=(null)

Summary

A brief summary of the denied action. This is the same as the denial in /var/log/messages.
In this example, the httpd process was denied access to a file (file1), which is labeled with
the samba_share_t type.

Detailed Description

A more verbose description. In this example, file1 is labeled with the samba_share_t type.
This type is used for files and directories that you want to export via Samba. The description
suggests changing the type to a type that can be accessed by the Apache HTTP Server and
Samba, if such access is desired.

Allowing Access

A suggestion for how to allow access. This may be relabeling files, turning a Boolean on, or
making a local policy module. In this case, the suggestion is to label the file with a type
accessible to both the Apache HTTP Server and Samba.

Fix Command

A suggested command to allow access and resolve the denial. In this example, it gives the
command to change the file1 type to public_content_t, which is accessible to the
Apache HTTP Server and Samba.

Additional Information

Information that is useful in bug reports, such as the policy package name and version
(selinux-policy-3.5.13-11.fc12), but may not help towards solving why the denial
occurred.

Raw Audit Messages

The raw audit messages from /var/log/audit/audit.log that are associated with the
denial. Refer to Section 8.3.6, “Raw Audit Messages” for information about each item in the AVC
denial.

8.3.8. Allowing Access: audit2allow

Do not use the example in this section in production. It is used only to demonstrate the use of
audit2allow.

From the audit2allow(1) manual page: "audit2allow - generate SELinux policy allow rules from logs of

denied operations" []. After analyzing denials as per Section 8.3.7, “sealert Messages”, and if no label
changes or Booleans allowed access, use audit2allow to create a local policy module. After access
is denied by SELinux, running the audit2allow command presents Type Enforcement rules that allow
the previously denied access.

The following example demonstrates using audit2allow to create a policy module:

1. A denial and the associated system call are logged to /var/log/audit/audit.log:

17

76 Chapter 8. Troubleshooting

A denial and the associated system call are logged to /var/log/audit/audit.log:

type=AVC msg=audit(1226270358.848:238): avc: denied { write } for
pid=13349 comm="certwatch" name="cache" dev=dm-0 ino=218171
scontext=system_u:system_r:certwatch_t:s0 tcontext=system_u:object_r:var_t:s0
tclass=dir

type=SYSCALL msg=audit(1226270358.848:238): arch=40000003 syscall=39
success=no exit=-13 a0=39a2bf a1=3ff a2=3a0354 a3=94703c8 items=0 ppid=13344
pid=13349 auid=4294967295 uid=0 gid=0 euid=0 suid=0 fsuid=0 egid=0 sgid=0
fsgid=0 tty=(none) ses=4294967295 comm="certwatch" exe="/usr/bin/certwatch"
subj=system_u:system_r:certwatch_t:s0 key=(null)

In this example, certwatch (comm="certwatch") was denied write access ({ write }) to a
directory labeled with the var_t type (tcontext=system_u:object_r:var_t:s0). Analyze
the denial as per Section 8.3.7, “sealert Messages”. If no label changes or Booleans allowed
access, use audit2allow to create a local policy module.

2. With a denial logged, such as the certwatch denial in step 1, run the audit2allow -w -a
command to produce a human-readable description of why access was denied. The -a option
causes all audit logs to be read. The -w option produces the human-readable description. The
audit2allow tool accesses /var/log/audit/audit.log, and as such, must be run as the
Linux root user:

~]# audit2allow -w -a
type=AVC msg=audit(1226270358.848:238): avc: denied { write } for
pid=13349 comm="certwatch" name="cache" dev=dm-0 ino=218171
scontext=system_u:system_r:certwatch_t:s0 tcontext=system_u:object_r:var_t:s0
tclass=dir
 Was caused by:
 Missing type enforcement (TE) allow rule.

 You can use audit2allow to generate a loadable module to allow this access.

As shown, access was denied due to a missing Type Enforcement rule.

3. Run the audit2allow -a command to view the Type Enforcement rule that allows the denied
access:

~]# audit2allow -a

#============= certwatch_t ==============
allow certwatch_t var_t:dir write;

Important

Missing Type Enforcement rules are usually caused by bugs in SELinux policy, and should
be reported in Red Hat Bugzilla. For Red Hat Enterprise Linux, create bugs against the Red
Hat Enterprise Linux product, and select the selinux-policy component. Include
the output of the audit2allow -w -a and audit2allow -a commands in such bug
reports.

4. To use the rule displayed by audit2allow -a, run the audit2allow -a -M mycertwatch
command as the Linux root user to create custom module. The -M option creates a Type
Enforcement file (.te) with the name specified with -M, in your current working directory:

Red Hat Enterprise Linux 6 Security-Enhanced Linux 77

https://bugzilla.redhat.com/

~]# audit2allow -a -M mycertwatch

******************** IMPORTANT ***********************
To make this policy package active, execute:

semodule -i mycertwatch.pp

~]# ls
mycertwatch.pp mycertwatch.te

Also, audit2allow compiles the Type Enforcement rule into a policy package (.pp). To install
the module, run the semodule -i mycertwatch.pp command as the Linux root user.

Important

Modules created with audit2allow may allow more access than required. It is
recommended that policy created with audit2allow be posted to an SELinux list, such as
fedora-selinux-list, for review. If you believe their is a bug in policy, create a bug in Red Hat
Bugzilla.

If you have multiple denials from multiple processes, but only want to create a custom policy for a single
process, use the grep command to narrow down the input for audit2allow. The following example
demonstrates using grep to only send denials related to certwatch through audit2allow:

~]# grep certwatch /var/log/audit/audit.log | audit2allow -M mycertwatch2
******************** IMPORTANT ***********************
To make this policy package active, execute:

~]# semodule -i mycertwatch2.pp

Refer to Dan Walsh's "Using audit2allow to build policy modules. Revisited." blog entry for further
information about using audit2allow to build policy modules.

Files in /etc/selinux/targeted/contexts/files/ d efine co ntexts fo r fi les and d irecto ries. Files in this d irecto ry are read b y
restorecon and setfiles to resto re fi les and d irecto ries to their d efault co ntexts.

[12]

The semanage port -a co mmand ad d s an entry to the /etc/selinux/targeted/modules/active/ports.local fi le. No te:
b y d efault, this fi le can o nly b e viewed b y the Linux ro o t user.

[13]

Fro m the ausearch(8) manual p ag e, as ship p ed with the audit p ackag e in Red Hat Enterp rise Linux 6 .[14]

Fro m the ausearch(8) manual p ag e, as ship p ed with the audit p ackag e in Red Hat Enterp rise Linux 6 .[15]

Fro m the aurep o rt(8) manual p ag e, as ship p ed with the audit p ackag e in Red Hat Enterp rise Linux 6 .[16]

Fro m the aud it2allo w(1) manual p ag e, which is availab le when the policycoreutils-sandbox p ackag e in Red Hat Enterp rise Linux 6 is
installed .

[17]

78 Chapter 8. Troubleshooting

http://www.redhat.com/mailman/listinfo/fedora-selinux-list
https://bugzilla.redhat.com/
http://danwalsh.livejournal.com/24750.html

Chapter 9. Further Information

9.1. Contributors
Domingo Becker - Translation - Spanish

Dominick Grift - Technical Editor

Daniel Cabrera - Translation - Spanish

Murray McAllister - Red Hat Engineering Content Services

James Morris - Technical Editor

Eric Paris - Technical Editor

Scott Radvan - Red Hat Engineering Content Services

Daniel Walsh - Red Hat Security Engineering

Geert Warrink - Translation - Dutch

9.2. Other Resources

The National Security Agency (NSA)

From the NSA Contributors to SELinux page:

Researchers in NSA's National Information Assurance Research Laboratory (NIARL) designed and
implemented flexible mandatory access controls in the major subsystems of the Linux kernel and
implemented the new operating system components provided by the Flask architecture, namely the
security server and the access vector cache. The NSA researchers reworked the LSM-based SELinux for
inclusion in Linux 2.6. NSA has also led the development of similar controls for the X Window System
(XACE/XSELinux) and for Xen (XSM/Flask).

Main SELinux website: http://www.nsa.gov/research/selinux/index.shtml.

SELinux documentation: http://www.nsa.gov/research/selinux/docs.shtml.

SELinux background: http://www.nsa.gov/research/selinux/background.shtml.

Tresys Technology

Tresys Technology are the upstream for:

SELinux userland libraries and tools.

SELinux Reference Policy.

SELinux News

News: http://selinuxnews.org/wp/.

Planet SELinux (blogs): http://selinuxnews.org/planet/.

SELinux Project Wiki

Main page: http://selinuxproject.org/page/Main_Page.

User resources, including links to documentation, mailing lists, websites, and tools:
http://selinuxproject.org/page/User_Resources.

Red Hat Enterprise Linux 6 Security-Enhanced Linux 79

http://fedoraproject.org/wiki/User:Beckerde
mailto:domg472@gmail.com
http://fedoraproject.org/wiki/User:Logan
mailto:mmcallis@redhat.com
mailto:jmorris@redhat.com
mailto:eparis@parisplace.org
mailto:sradvan@redhat.com
mailto:dwalsh@redhat.com
http://fedoraproject.org/wiki/GeertWarrink
http://www.nsa.gov/research/selinux/contrib.shtml
http://www.nsa.gov/research/selinux/index.shtml
http://www.nsa.gov/research/selinux/docs.shtml
http://www.nsa.gov/research/selinux/background.shtml
http://www.tresys.com/
http://userspace.selinuxproject.org/trac/
http://oss.tresys.com/projects/refpolicy
http://selinuxnews.org/wp/
http://selinuxnews.org/planet/
http://selinuxproject.org/page/Main_Page
http://selinuxproject.org/page/User_Resources

Fedora

Main page: http://fedoraproject.org/wiki/SELinux.

Troubleshooting: http://fedoraproject.org/wiki/SELinux/Troubleshooting.

Fedora SELinux FAQ: http://docs.fedoraproject.org/.

SELinux Managing Confined Services Guide: http://docs.fedoraproject.org/

The UnOfficial SELinux FAQ

http://www.crypt.gen.nz/selinux/faq.html

IRC

On Freenode:

#selinux

#fedora-selinux

#security

80 Chapter 9. Further Information

http://fedoraproject.org/wiki/SELinux
http://fedoraproject.org/wiki/SELinux/Troubleshooting
http://docs.fedoraproject.org/
http://docs.fedoraproject.org/
http://www.crypt.gen.nz/selinux/faq.html
http://freenode.net/

Revision History
Revision 3-35 2012-07-18 Anthony Towns

Rebuild for Publican 3.0

Revision 3-0 Wed Jun 20 2012 Martin Prpič
Release of the SELinux Guide for Red Hat Enterprise Linux 6.3

Revision 2-0 Tue Dec 6 2011 Martin Prpič
Release of the SELinux Guide for Red Hat Enterprise Linux 6.2

Revision 1.9-0 Wed Mar 3 2010 Scott Radvan
Revision for Red Hat Enterprise Linux 6

Red Hat Enterprise Linux 6 Security-Enhanced Linux 81

	Security-Enhanced Linux
	User Guide

	Legal Notice
	Abstract
	Table of Contents
	Preface
	1. Document Conventions
	1.1. Typographic Conventions
	1.2. Pull-quote Conventions
	1.3. Notes and Warnings

	Note
	Important
	Warning
	2. We Need Feedback!

	Chapter 1. Trademark Information
	Chapter 2. Introduction
	Linux and SELinux Users
	2.1. Benefits of running SELinux
	2.2. Examples
	2.3. SELinux Architecture
	2.4. SELinux on Other Operating Systems

	Chapter 3. SELinux Contexts
	3.1. Domain Transitions
	3.2. SELinux Contexts for Processes
	3.3. SELinux Contexts for Users

	Chapter 4. Targeted Policy
	4.1. Confined Processes
	4.2. Unconfined Processes
	4.3. Confined and Unconfined Users

	Chapter 5. Working with SELinux
	5.1. SELinux Packages
	5.2. Which Log File is Used
	Starting Daemons Automatically

	5.3. Main Configuration File
	Important
	5.4. Enabling and Disabling SELinux
	5.4.1. Enabling SELinux

	Important
	5.4.2. Disabling SELinux

	5.5. SELinux Modes
	5.6. Booleans
	5.6.1. Listing Booleans
	5.6.2. Configuring Booleans
	5.6.3. Booleans for NFS and CIFS
	Apache HTTP Server
	Samba
	FTP (vsftpd)
	Other Services

	Note
	5.7. SELinux Contexts - Labeling Files
	5.7.1. Temporary Changes: chcon
	Quick Reference
	Changing a File's or Directory's Type
	Changing a Directory and its Contents Types

	Note
	5.7.2. Persistent Changes: semanage fcontext
	Quick Reference
	Changing a File's Type
	Changing a Directory's Type
	Changing a Directory and its Contents Types
	Deleting an added Context

	Important
	5.8. The file_t and default_t Types
	5.9. Mounting File Systems
	5.9.1. Context Mounts

	Note
	5.9.2. Changing the Default Context
	5.9.3. Mounting an NFS File System
	5.9.4. Multiple NFS Mounts

	Important
	5.9.5. Making Context Mounts Persistent

	5.10. Maintaining SELinux Labels
	5.10.1. Copying Files and Directories
	Copying Without Preserving SELinux Contexts
	Preserving SELinux Contexts When Copying
	Copying and Changing the Context
	Copying a File Over an Existing File

	Important
	5.10.2. Moving Files and Directories

	Important
	5.10.3. Checking the Default SELinux Context
	5.10.4. Archiving Files with tar
	5.10.5. Archiving Files with star

	5.11. Information Gathering Tools
	avcstat
	seinfo
	sesearch

	5.12. Multi-Level Security (MLS)
	Figure 5.1. Levels of clearance
	Figure 5.2. Allowed data flows using MLS
	5.12.1. MLS and System Privileges
	5.12.2. Enabling MLS in SELinux

	Note
	5.12.3. Creating a User With a Specific MLS Range
	5.12.4. Setting Up Polyinstantiated Directories

	Chapter 6. Confining Users
	6.1. Linux and SELinux User Mappings
	6.2. Confining New Linux Users: useradd
	6.3. Confining Existing Linux Users: semanage login
	6.4. Changing the Default Mapping
	6.5. xguest: Kiosk Mode
	6.6. Booleans for Users Executing Applications
	guest_t
	xguest_t
	user_t
	staff_t

	Chapter 7. sVirt
	Non-Virtualized Environment
	Virtualized Environment
	7.1. Security and Virtualization
	7.2. sVirt Labeling
	Table 7.1. sVirt Labels

	Chapter 8. Troubleshooting
	8.1. What Happens when Access is Denied
	8.2. Top Three Causes of Problems
	8.2.1. Labeling Problems
	8.2.1.1. What is the Correct Context?

	8.2.2. How are Confined Services Running?
	Port Numbers

	8.2.3. Evolving Rules and Broken Applications

	8.3. Fixing Problems
	8.3.1. Linux Permissions
	8.3.2. Possible Causes of Silent Denials
	8.3.3. Manual Pages for Services
	8.3.4. Permissive Domains
	8.3.4.1. Making a Domain Permissive
	8.3.4.2. Denials for Permissive Domains

	8.3.5. Searching For and Viewing Denials
	ausearch
	aureport
	sealert

	8.3.6. Raw Audit Messages
	8.3.7. sealert Messages
	8.3.8. Allowing Access: audit2allow

	Important
	Important

	Chapter 9. Further Information
	9.1. Contributors
	9.2. Other Resources
	The National Security Agency (NSA)
	Tresys Technology
	SELinux News
	SELinux Project Wiki
	Fedora
	The UnOfficial SELinux FAQ
	IRC

	Revision History

