Laboratoire Cloud2 – Storage – 60 min

0 Introduction

```
Ce travail de laboratoire présente les systèmes de stockage NAS & SAN :
```


L'équipement **QNAP** du laboratoire, pouvant accueillir 4 disques SATA, supportent ces 2 types : NAS & SAN

Dans un contexte d'entreprises, le client (NAS-SAN) peut être un PC Windows, un serveur Linux, un hyperviseur (ESXi ou KVM), une machine virtuelle, ...

sudo ./c 3

Ces systèmes de stockage constituent donc un maillon important des systèmes d'information ; ils peuvent parfois remplacer les disques des serveurs virtualisés (hyperviseur sans disque avec démarrage PXE).

Ils offrent généralement une très haute disponibilité à partir d'une architecture redondante et de mécanismes de synchronisation.

L'objectif principal de ce travail consiste à présenter les principales différences entre NAS & SAN au niveau configuration en gardant à l'esprit qu'un fichier est découpé en blocs lors d'une écriture sur un disque physique.

Ce travail de laboratoire, à effectuer par groupe de 2, exige 2 PCs Fedora16GUI qui seront désignés par Client et Serveur dans ce document labotd (compte utilisateur), password : labolabo

root (compte administrateur), password : rootroot

Les fichiers utiles (corrigé, ...) sont dans le partage /10.2.1.1/nfs_share/labo_storage/ accessible depuis le raccourci du bureau

1	Logical Volume Manager (LVM) 5 min	
Objectif	Découvrir avec LVM la gestion de l'espace de stockage existant	
Action	Sur le <mark>Serveur</mark> , connectez-vous avec le compte labotd	
But 1.1	Explorer l'outil graphique d'administration LVM avec le gestionnaire de volumes logiques	i
Action	Double-clic sur le raccourci bureau Logical Volume Management Observer les deux vues Vue physique et Vue logique proposées	
Q_1.1a	Que représentent ces deux vues ?	
Q_1.1b	Combien de VG y a-t-il sur notre système ?	
Q_1.1c	Combien de LV y a-t-il sur notre système ? A quoi servent-ils ?	
But 1.2	Obtenir les même infos en ligne de commande	
Action	Clic sur LXTerminal pour ouvrir un terminal et le garder ouvert pendant tout le labo	
	Se connecter en tant que root (commande su) Exécutez la commande lvm pvdisplay	
Q_1.2a	Quelle est la taille du disque physique ? Comparer avec l'info donnée par l'outil graphique	÷
Action	Exécutez la commande lvm lvdisplav (logical view)	
Q_1.2b	Quelles sont les tailles des volumes ?	
_		
D ut 4.0		
But 1.3	Creer un LV de 40 GB qui servira de disque partage iSCSI (§2)	
Action	Typer lvcreate -n lv1 -L 40G vg Tester la présence de lv1 avec les 2 outils	
En réserve	 L'étudiant qui veut approfondir LVM peut parcourir les pages 68 et 75-76 du rapport¹ de Sébastien Pasche 	

• le chapitre 6 du livre Bouchaudy Tome1²

http://www.tdeig.ch/kvm/pasche_R.pdf
 http://www.eyrolles.com/Informatique/Livre/linux-administration-tome-1-9782212120370

2	Configurer le <mark>serveur</mark> (target) et un <mark>client</mark> (initiator) iSCSI	10 min
But 2.1 Action	<pre>Définir le volume lv1 comme disque iSCSI Avec le compte root, typer nano /etc/tgt/targets.conf Ajouter à la fin du fichier <target iqn.2013-01.tdeig:dl=""> backing-store /dev/vg/lv1 initiator-address IP_Client </target> Typer <ctrl+x> pour enregistrer puis <y> pour confirmer</y></ctrl+x></pre>	
But 2.2 Action	Démarrer le service tgtd (iSCSI Target Daemon) Typer systemctl start tgtd.service	
But 2.3 Action	Contrôler que le service est actif Typer tgtadmmode targetop show	
Q_2.3a	Combien de LUN (Logical Unit Number) sont présents ?	
But 2.4	Lancer System Monitor côté client	
Action	Lancer System Monitor depuis le bureau 💷 ; afficher l'onglet ressources.	
But 2.5	Démarrer le service iSCSI Sur le client , avec le compte <mark>root</mark> , démarrer le service Typer chkconfig iscsi on Typer chkconfig iscsid on	
But 2.6	Découvrir le serveur iSCSI Avec le compte <mark>root</mark> , Typer iscsiadm -m discovery -t sendtargets -p IP_Serveur Typer iscsiadm -m node -o show	
But 2.7	Se connecter au disque distant Typer iscsiadm -m nodelogin -d2	
	Vérifier l'établissement de la session Typer iscsiadm -m session -o show	
	Contrôler la présence du disque distant Typer lsblk	
Q_2.7a	Quel est le nom du disque iSCSI ?	
Q_2.7b	Pouvez-vous voir et accéder à ce disque iSCSI depuis le File Manager (raccourci burea	u) ?
Q_2.7c	Pourquoi ?	
But 2.8	Formater le disque distant Typer mkfs -t ext4 /dev/sdb Confirmer l'opération par la touche <y> Monter le disque dans le répertoire /media mkdir /media/iscsi mount /dev/sdb /media/iscsi</y>	

Remarque

Vous observez pendant environ 2 minutes une charge réseau moyenne de 3 Mb/s dans System Monitor due au montage du disque dans le dossier /media/iscsi. Network History

Q_2.8a Est-ce que le disque est accessible depuis le gestionnaire de fichier ?

- **Q_3.1b** Dans le graphique, quand la copie est-elle terminée ?
- Q_3.1c Quand la LED indique la fin de la copie ?

4	Configurer un partage NFS sur le <mark>serveur</mark> et le tester depuis un <mark>client</mark>	15 min
But 4.1 Action	Configurer le partage NFS Dans un terminal root du serveur mkdir /nfs nano /etc/exports Ajouter cette ligne pour le partage /home /nfs IP_CLIENT/32(rw,sync,no_root_squash,no_all_squash) Démarrer le service de partage : systemctl start nfs-server.service	
But 4.2 Action	Monter le partage NFS sur le <mark>client</mark> Dans un terminal root du client mkdir /mnt/nfs mount -t nfs4 IP_SERVEUR:/nfs /mnt/nfs	
But 4.3 Action	Tester le débit du partage NFS (refaire point 3.1) Sur le <mark>client</mark> cd /root	
Action	Effectuer plusieurs fois les opérations ci-dessous pour analyser la copie de 500 MByte Ne pas oublier de donner un nouveau nom f2, f3, au fichier copié Vider le cache : sync; sysctl -w vm.drop_caches=3 Copier le fichier : pv f500MB > /mnt/nfs/f1	
Q_4.3a	Quelle est la durée du transfert indiquée par la commande pv ?	

Q_4.3b Dans le graphique, quand la copie est-elle terminée ?

Q_4.3c Quand la LED indique la fin de la copie ?

5	Comparer les volumes échangés avec les protocoles iSCSI et nfs	15 min
Introduction	Vous disposez de 2 acquisitions Wireshark effectuées lors de la copie du fichier aaaaa le texte aaaaa	.txt contenant
Méthodologie	Utiliser les fonctions du menu Statistics de Wireshark pour répondre aux questions	
But 5.1	Caractériser le flux iSCSI	
Q_5.1a	Déterminer le nb de paquet envoyé par le <mark>client</mark>	
Q_5.1b	Déterminer le nb de byte envoyé par le <mark>client</mark>	
Q_5.1c	Déterminer le nb de paquet envoyé par le <mark>serveur</mark>	
Q_5.1d	Déterminer le nb de byte envoyé par le <mark>serveur</mark>	
But 5.2	Caractériser le flux nfs	
Q_5.2a	Déterminer le nb de paquet envoyé par le <mark>client</mark>	
Q_5.2b	Déterminer le nb de byte envoyé par le <mark>client</mark>	
Q_5.2c	Déterminer le nb de paquet envoyé par le <mark>serveur</mark>	
Q_5.2d	Déterminer le nb de byte envoyé par le <mark>serveur</mark>	
- /		
But 5.3	Données utiles nfs	

- Q_5.3a Déterminer le numéro du paquet contenant aaaaa
- But 5.4 Données utiles iSCSI
- Q_5.4a Déterminer le numéro du paquet contenant aaaaa

ANNEXE 1 – commande iotop

Cette partie est optionnelle. Elle illustre la méthodologie de mesure avec la commande iotop

- But 3.2 Synchroniser les horloges
- Action Dans un terminal root du client et du serveur Typez ntpdate 129.194.184.1 Vérifier la mise à jour par la commande : date
- **Remarque** Sur l'interface graphique, la mise à jour de l'horloge ne se fait pas instantanément.
- But 3.3Utilisation de la commande iotop. Copie d'un fichier sur le disque iSCSIActionSur le clientVider le cache : sync; sysctl -w vm.drop_caches=3Préparer la commande sur le client : pv f500MB > /media/iscsi/f2

Sur le client et sur le serveur

Ouvrir un nouveau terminal root et lancer la commande : yum install iotop iotop -b -t -q -o -k > f2.txt

Sur le client Lancer la copie : pv f500MB > /media/iscsi/f2

Sur le client et sur le serveur

Arrêter (Ctrl-C) la commande iotop au minimum 1 minutes après le début de copie.

Q_3.3a Que fait la commande iotop ? Quel est l'utilité de l'option -o ? (man iotop) iotop affiche les entrées sorties que fait le noyau Linux pour chaque processus ou thread. L'option -o permet d'afficher uniquement les processus qui effectue des entrées sorties.

Action Afficher le fichier f2.txt et l'intitulé de chaque colonne : cat f2.txt | less

Filtrer les résultats sur le client : cat f2.txt | grep pv

09:53:34	5100 be/4 root	70459.68 K/s	70412.70 K/s	0.00 %	88.34	% pv	f500MB
09:53:35	5100 be/4 root	76148.06 K/s	76148.06 K/s	0.00 %	87.39	% pv	f500MB
09:53:36	5100 be/4 root	78714.54 K/s	78714.54 K/s	0.00 %	87.10	% pv	f500MB
09:53:37	5100 be/4 root	77493.08 K/s	77493.08 K/s	0.00 %	87.14	% pv	f500MB
09:53:38	5100 be/4 root	77344.11 K/s	77418.54 K/s	0.00 %	87.26	% pv	f500MB
09:53:39	5100 be/4 root	77483.29 K/s	77408.84 K/s	0.00 %	87.08	% pv	f500MB

Filtrer les résultats sur le serveur : cat f2.txt | grep tgtd

				 	1 3							
09:53:44	1834	be/4	root	0.00	K/s	3.92	K/s	0.00	%	0.00	%	tgtd
09:54:04	1831	be/4	root	0.00	K/s	15553.42	K/s	0.00	%	0.00	%	tgtd
09:54:04	1832	be/4	root	0.00	K/s	15051.70	K/s	0.00	%	0.00	%	tgtd
09:54:04	1833	be/4	root	0.00	K/s	15553.42	K/s	0.00	%	0.00	%	tgtd
09:54:04	1834	be/4	root	0.00	K/s	15553.42	K/s	0.00	%	0.00	%	tgtd
09:54:05	1831	be/4	root	3.85	K/s	23651.28	K/s	0.00	%	1.50	%	tgtd
09:54:05	1832	be/4	root	0.00	K/s	25129.49	K/s	0.00	%	0.00	%	tgtd
09:54:05	1833	be/4	root	0.00	K/s	24636.75	K/s	0.00	%	0.00	%	tgtd
09:54:05	1834	be/4	root	0.00	K/s	24636.75	K/s	0.00	%	0.00	%	tgtd
09:54:06	1831	be/4	root	0.00	K/s	27923.92	K/s	0.00	%	0.00	%	tgtd
09:54:06	1832	be/4	root	0.00	K/s	27923.92	K/s	0.00	%	0.00	%	tgtd
09:54:06	1833	be/4	root	0.00	K/s	27923.92	K/s	0.00	%	0.00	%	tgtd
09:54:06	1834	be/4	root	0.00	K/s	27425.28	K/s	0.00	%	0.00	%	tgtd
09:54:07	1834	be/4	root	3.88	K/s	27345.86	K/s	0.00	%	0.02	%	tgtd
09:54:07	1831	be/4	root	0.00	K/s	28340.25	K/s	0.00	%	0.00	%	tgtd
09:54:07	1832	be/4	root	0.00	K/s	28340.25	K/s	0.00	%	0.00	%	tgtd
09:54:07	1833	be/4	root	0.00	K/s	27843.06	K/s	0.00	%	0.00	%	tgtd
09:54:08	1831	be/4	root	0.00	K/s	27026.53	K/s	0.00	%	0.00	%	tgtd
09:54:08	1832	be/4	root	0.00	K/s	27527.02	K/s	0.00	%	0.00	%	tgtd
09:54:08	1833	be/4	root	0.00	K/s	27026.53	K/s	0.00	%	0.00	%	tgtd
09:54:08	1834	be/4	root	0.00	K/s	30029.47	K/s	0.00	%	0.00	%	tgtd
09:54:09	1831	be/4	root	0.00	K/s	999.45	K/s	0.00	%	0.00	%	tgtd

En superposant les 2 historiques (synchronisés sur la même référence temporelle)

But 4.4 Utilisation de la commande iotop. Copie d'un fichier sur le partage nfs Sur le client et sur le serveur

Ouvrir un nouveau terminal et lancez la commande : iotop -b -t -q -o -k > f3.txt

Sur le client

Lancer la copie : pv f500MB > /mnt/nfs/f3

Sur le client et sur le serveur

Arrêter la commande iotop au minimum 1 minutes après le début de copie.

Filtrer les résultats sur le client : cat f3.txt | grep pv

10:32:44	5345 be/4	root	103820.86	K/s	103785.61	K/s	0.00	%	82.61	%	pv f500MB
10:32:45	5345 be/4	root	95512.77	K/s	95512.77	K/s	0.00	%	83.54	%	pv f500MB
10:32:46	5345 be/4	root	104331.02	K/s	104331.02	K/s	0.00	%	81.90	%	pv f500MB
10:32:47	5345 be/4	root	99298.87	K/s	99298.87	K/s	0.00	%	81.53	%	pv f500MB
10:32:48	5345 be/4	root	82399.80	K/s	82648.74	K/s	0.00	%	77.46	%	[pv]
10:32:49	5345 be/4	root	0.00	K/s	0.00	K/s	0.00	%	99.99	%	[pv]

Filtrer les résultats sur le serveur : cat f3.txt | grep nfsd | less

10:32:48	4649	be/4	root	0.00	K/s	52662.51	K/s	0.00	%	0.00	%	[nfsd]
10:32:48	4650	be/4	root	0.00	K/s	38234.26	K/s	0.00	%	0.00	%	[nfsd]
10:32:48	4651	be/4	root	0.00	K/s	12073.98	K/s	0.00	%	0.00	%	[nfsd]
10:32:49	4649	be/4	root	0.00	K/s	35699.87	K/s	0.00	%	0.00	%	[nfsd]
10:32:49	4652	be/4	root	0.00	K/s	38042.31	K/s	0.00	%	0.00	%	[nfsd]
10:32:49	4650	be/4	root	0.00	K/s	41045.66	K/s	0.00	%	0.00	%	[nfsd]
10:32:50	4649	be/4	root	0.00	K/s	25023.80	K/s	0.00	%	0.00	%	[nfsd]
10:32:50	4652	be/4	root	0.00	K/s	25023.80	K/s	0.00	%	0.00	%	[nfsd]
10:32:50	4654	be/4	root	0.00	K/s	23021.90	K/s	0.00	%	0.00	%	[nfsd]
10:32:50	4650	be/4	root	0.00	K/s	41039.04	K/s	0.00	%	0.00	%	[nfsd]
10:32:51	4649	be/4	root	0.00	K/s	998.02	K/s	0.00	%	0.00	%	[nfsd]
10:32:51	4652	be/4	root	0.00	K/s	6986.13	K/s	0.00	%	0.00	%	[nfsd]
10:32:51	4654	be/4	root	0.00	K/s	15968.29	K/s	0.00	%	0.00	%	[nfsd]
10:32:51	4650	be/4	root	0.00	K/s	56590.76	K/s	0.00	%	0.00	%	[nfsd]
10:32:51	4651	be/4	root	0.00	K/s	33932.63	K/s	0.00	%	0.00	%	[nfsd]
10:32:52	4654	be/4	root	0.00	K/s	18971.89	K/s	0.00	%	43.38	%	[nfsd]
10:32:52	4652	be/4	root	0.00	K/s	998.52	K/s	0.00	%	0.00	%	[nfsd]
10:32:52	4650	be/4	root	0.00	K/s	11280.16	K/s	0.00	%	0.00	%	[nfsd]
10:32:52	4651	be/4	root	0.00	K/s	22965.98	K/s	0.00	%	0.00	%	[nfsd]
10:32:53	4654	be/4	root	0.00	K/s	0.00	K/s	0.00	%	96.31	%	[nfsd]

En superposant les 2 historiques (synchronisés sur la même référence temporelle)

