
Initial Cryptanalysis of the RSA SecurID Algorithm

Mudge and Kingpin
{mudge,kingpin}@atstake.com

@stake, Inc.
http://www.atstake.com

January 2001

Abstract

Recently, I.C. Wiener published a reverse engineer-
ing effort of the RSA SecurID1 algorithm [1]. There
were few speculations on the security ramifications
of the algorithm in I.C. Wiener’s posting, so this
note is an effort to touch upon areas of concern. We
have verified that I.C. Wiener’s released version of
the proprietary algorithm is accurate by comparing
it with our own prior reverse engineering of the same
algorithm.

Due to the time sensitivity imposed by the public
release of RSA’s proprietary algorithm, we felt it
necessary to release this brief to help people better
understand and work toward reducing the risks to
which they might currently be exposed. The risk
profile of token devices changes when they are im-
plemented in an uncontrolled environment, such as
the Internet, and the research in this paper aims to
educate and to help manage those risks. The pri-
mary concern is the possiblity to generate a com-
plete cycle of tokencode outputs given a known se-
cret, which is equivilent to the cloning of a token
device.

This short paper will examine several discovered sta-
tistical irregularities in functions used within the Se-
curID algorithm: the time computation and final
conversion routines. Where and how these irregu-
larities can be mitigated by usage and policy are
explored. We are planning for the release of a more
thorough analysis in the near future. This paper
does not present methods of determining the secret
component by viewing previously generated or suc-
cessive tokencodes.

1SecurID is a registered trademark of RSA Security, Inc.

1 Introduction

The RSA SecurID token is currently based upon a
proprietary algorithm and provides a 6- to 8-digit
tokencode as output. This output is said to be a
“new, unpredictable code” [4] displayed at 30- or
60-second intervals. The algorithm being used as
of this writing was originally designed for and used
on a custom 4-bit microcontroller with an operating
speed of less than 1 megahertz. Given these opera-
tional and computational capabilities, the use of a
64-bit time value and a 64-bit secret component in
a destructive algorithm were responsible choices to
protect authentication over non-promiscuous chan-
nels.

If the tokencodes are presented over a medium that
can be monitored by an attacker or are viewed on
a temporarily borrowed token device, the SecurID
implementation is left vulnerable if an attack ex-
ists to determine the secret component by viewing
previously generated or successive tokencodes. Ad-
ditionally, with the advent of soft-tokens existing
on popular operating systems and not dependent
on specific hardware, the level of effort needed to
retrieve the proprietary algorithm and secret com-
ponent has been greatly reduced. If the algorithm is
reversible or the initial components to the algorithm
are deducible, the risk of cloned cards or prediction
of future tokencodes is very real.

The protective measures become simple: ensure the
integrity and handling of hardware and software to-
ken devices, authenticate through encrypted com-
munications, and, as recommended in [2], ensure
that the back-end communications with the appli-
cation server to the ACE authentication server [3]
are not implemented over public links.



Algorithm Convert
64-bit Time

64-bit Secret

Actual
Tokencode

Value

Pre-convert Value

Figure 1: High–level process of tokencode generation.

With this stated, the rest of this document will ex-
amine areas of concern within the algorithm.

2 Algorithm Concerns

The tokencodes generated by the algorithm are de-
rived from two internal values: a 64-bit time value
and a 64-bit secret. The result of the algorithm is
then run through a final convert routine which fur-
ther obfuscates the true algorithm output and pro-
duces a value suitable for display on a hardware-
or software-based token (Figure 1). The value out-
put by the convert routine is 64-bits in length and
is split into multiple tokencodes depending on the
token device and display interval.

2.1 Time

The variable input into the SecurID algorithm rep-
resenting the current time is a 64-bit value. How-
ever, examination shows that this 64-bit value is
generated from a 32-bit representation of the cur-
rent time (GMT) in seconds since midnight on
01/01/862 as shown in Figure 2.

For example, should the number of seconds from
the SecurID epoch be 0x1C39B862, the time
value input to the SecurID algorithm would be
0xF0DB7878F0DB7878. This is derived by round-
ing the initial number of seconds from the epoch to
achieve a value of 0x00F0DB78. From this, the value
is shifted left by 8 bits and the least significant byte
is represented twice. Thus, it is apparent that only
24 bits are represented from the original 32-bit value
representing seconds from the epoch.

Within the rounding function, the value is left
2Security Dynamics, the creators of the SecurID card, be-

gan operations in 1986.

INT64 time64;

INT32 time;

UCHAR byte;

// Seconds since 01/01/86, 00:00

time = gettimeofday();

// Round down time

time = time / 30;

time = time / 4;

time = time * 4;

// Expand time into 64-bits

// (Duplicate least significant byte)

byte = time & 0xFF;

time = time << 8;

time = time | byte;

time64 = time;

time64 = time64 << 32;

time64 = time64 | time;

Figure 2: Pseudo–code for the 64–bit time compu-
tation routine.

shifted twice, which is equivalent to a multiplica-
tion by 4. This guarantees, through the associative
property of multiplication, that the resultant value
will always be even. Hence, the least significant two
bits will always be 00 and the only possible values
for the least significant nibble are 0x0, 0x4, 0x8,
and 0xC. This multiplication removes two more bits
of entropy from the 24-bit time value leaving 222

or 4,194,304 total possible time values. It should
be pointed out that the possible time values can be
further reduced if we assume the attacker has some
prior knowledge of the approximate time the token-
code was generated.

The result of this reduced time space is that it is pos-
sible to generate a complete tokencode “cycle” by in-
crementing through all possible values of time for a
single secret. The complete cycle contains 4,194,304
total possible 64-bit outputs from the SecurID al-
gorithm. The period of the cycle was designed to
be longer than the lifetime of the token device, if
the device is run in real-time (in the case where an
8-digit tokencode length is used with a 60-second



0 1 2 3 4 5 6 7 8 9
0 1 2 3 4 5 6 7 8 9
A B A B A B A B A B
C D C D C D C D C D
E F E F E F E F E F

Table 1: Displayed tokencode nibble and its possible pre–convert values

display interval, it would take ≈16 years to cycle
through all possible tokencode values). However,
using a modified soft-token device, time can be in-
cremented at a much faster rate, thus producing the
entire tokencode cycle in a matter of minutes.

2.2 Secret

RSA has not divulged how they generate the initial
64-bit secrets that are used as one of the inputs into
their algorithm. As these values are pre-ordained,
one can assume that even if the generation mecha-
nism was predictable, it can be changed transpar-
ently to a more random generation scheme. How-
ever, even with strong pseudo-random or random
number generation of the secret, the limited number
of possible time values makes this point irrelevant
in certain cases.

Should the secret component be compromised from
the physical hardware token or application execut-
ing the soft-token, all possible output values can be
cycled through and recorded by using the propri-
etary SecurID algorithm as in [1]. This could be
done without tampering with the legitimate token
device, so the attack would not be immediately de-
tected.

Methods of determining the 64-bit secret from sam-
plings of the token space will be looked at in the
more thorough analysis paper.

2.3 Convert

The tokencode value to be entered by the user is
represented in decimal ranging from 6- to 8-digits in
length. This decimal value is derived from a 64-bit
hexadecimal value, called the “pre-convert value”,
using a simple transform (Figure 3). This function
was designed to map hexadecimal to decimal value
in a non-obvious manner and not intended to pro-

vide additional security to the SecurID algorithm.
The fact that it provides a manner of obfuscation of
the pre-convert value is a by-product.

For each nibble in the pre-convert value, if the nibble
is greater than 9, the transform is used. Otherwise,
if the nibble is less than or equal to 9, the natural
number is displayed. From this, the value shown to
the user could originate as represented in Table 1.
In an ideal design, a hex value from 0xA through
0xF could potentially be mapped to a decimal value
from 0 through 9. However, since 0xA, 0xC, and 0xE
can only be mapped to 0, 2, 4, 6, or 8 and 0xB, 0xD,
and 0xF can only be mapped to 1, 3, 5, 7, or 9,
the number of possible pre-convert values is greatly
reduced.

For each nibble in hexadecimal pre-convert value

{

if (nibble > 9)

{

nibble = nibble - 2;

nibble = nibble - {0, 2, 4, 6, 8};

nibble = nibble % 10;

}

}

Figure 3: Pseudo–code of simple transform within
the convert routine.

Given tlen as the length of the tokencode, for any
given tokencode value the convert routine only pro-
vides 4tlen possible pre-convert values, which can
then be analyzed to determine particular bit config-
urations of the actual secret. The ideal design would
result in 7tlen possible pre-convert values. For ex-
ample, a typical 6-digit tokencode has 46 or 4096
possible pre-convert values that could have gener-
ated it. The ideal case would give 76 or 117,649
possible pre-convert values.

For each value of the actual displayed tokencode,
there is a 62.5% probability that the number is the
natural number (e.g., a 0 displayed has a pre-convert



value of 0), and a 12.5% probability that the number
is either {A, C, E} or {B, D, F}. Statistical detail
is deferred to the more thorough paper.

2.4 Collisions in Tokencode Cycle

Analyzing tokencode cycles for a small sample of
pseudo-randomly generated 64-bit secrets yields in-
teresting results. Out of the 8,388,608 possible to-
kencodes (2 tokencodes produced for each value of
time), ≈8 million of those tokencodes are unique and
occur only once per cycle. The remaining ≈300,000
are repeating or “colliding” values.

Collision % = (1− unique tokens
total possible tokens )× 100

Hence, 4% of the tokencode cycle consists of repeat-
ing values. We believe this is partly due to the con-
vert routine.

3 Conclusions

The concerns mentioned in this brief hope to mo-
tivate further public assessment of the current Se-
curID algorithm. Do they negate the usefulness
of an infrastructure utilizing this technology? No.
However, it does point to the possibility that com-
panies might be assuming more risk than they need
to. Hopefully, the detailed concerns provide an op-
portunity for companies to evaluate how they have
deployed this product.

By encrypting the communications, limiting access
to back-end communications, and ensuring the in-
tegrity and whereabouts of the token generator, the
risks of promiscuous viewing of the user authen-
tication and tokencodes and potential retrieval of
the secret component are minimized greatly. SSH,
DESTelnet, SSL, and other encryption mechanisms
can be deployed to help minimize these risks. IPSec,
separate back-end management networks, and other
means can be implemented to protect the back-end
authentication that occurs between the application
server and the ACE/Server.

Users are encouraged to vigilantly protect their
hardware token cards or software token key files and

not to loan their devices to other people. In ad-
dition, extra caution must be taken when utilizing
software-based tokens to verify that the host system
is not easily compromised.

We are planning for the release of a more thorough
analysis of RSA’s SecurID algorithm in the near fu-
ture, which will further detail the statistical irreg-
ularities described in this paper. We plan to ex-
plore methods of determining the secret component
by viewing previously generated tokencodes. Addi-
tionally, we will examine exhaustive attack scenarios
and solutions based upon hypothesized deployment
scenarios.

References

[1] I. C. Wiener, Sample SecurID Token
Emulator with Token Secret Import,
BugTraq posting, December 21, 2000,
http://www.securityfocus.com/archive/1/
152525.

[2] PeiterZ, Weaknesses in SecurID

[3] RSA Security, ACE/Server Web Page,
http://www.rsasecurity.com/products/
securid/rsaaceserver.html.

[4] RSA Security, SecurID Authenticators Web
Page, http://www.rsasecurity.com/
products/securid/datasheets/
dsauthenticators.html.


