Labo Crypto (90 min)

Objectifs

Ce travail de laboratoire de **90 minutes** utilise l'excellent outil gratuit **CrypTool** 1.4.30 pour illustrer pratiquement :

- le chiffrement symétrique (César, OU exclusif, DES, AES),
- la compression,
- la fonction de hachage,
- l'algorithme RSA,
- la signature numérique,
- les systèmes hybrides

Action Ouvrir une session utilisateur Username=albert password=admin sous Windows7

Lien

1

Documents utiles dont le corrigé dans le partage réseau \\10.2.1.1\doclabo\Secu\Crypto

Utiliser le raccourci du bureau

2	Chiffrements mono-alphabétique et poly-alphabétique	10'
But 2.1	Attaque basée sur la fréquence d'apparition des caractères	
Rappel	Jules César chiffrait ses messages en décalant chaque caractère de N positions dans N constituant la clé secrète.	l'alphabet ;
Action	Lancer CrypTool à partir du raccourci bureau Vous constatez que l'outil a ouvert le fichier startingexample-en.txt Sélectionner cette fenêtre startingexample-en.txt	
	Chiffrer (Encrypt – Symmetric (classic) – Caesar) avec une clé "courte" comme C Observer le chiffrement mono-alphabétique affiché en bas de la nouvelle fenêtre Observer le <i>cyphertext</i>	
	Déchiffrez-le (Decrypt – Symmetric (classic) – Caesar) puis entrer la clé Observer le <i>plaintext</i>	
	Déterminer la fréquence d'apparition des caractères (Analysis – Tools for Analysis – H Prendre garde de sélectionner la bonne fenêtre <i>plaintext</i> ou <i>ciphertext</i> Superposer les 2 histogrammes pour casser la clé	listogram)
Question 2a	Obtient-on une meilleure protection avec une clé "longue" comme Z ?	
But 2.2	Enigma	
Action	Fermer toutes les fenêtres précédentes Dans CrypTool, sélectionner Indiv. Procedures – Visualization of Algorithms – Enigma Suivre les informations affichées Observer les caractères chiffrés pour le plaintext = ssss	
Question 2b	Peut-on utiliser la méthode précédente (fréquence d'apparition des caractères) pour d plaintext ?	eviner le

sudo ./c 2

3 Chiffrement avec l'algorithme OU exclusif 10'		10'
Introduction	Le <i>ciphertext</i> est chiffré bit à bit à l'aide de la fonction OU exclusif et d'une clé cyclique Le <i>plaintext</i> CrypTool.bmp se trouve dans C:\Program Files\CrypTool\examples	
But 3.1 Question 3a	Analyse du <i>cleartext</i> Quelle est l'octet (8 bit) le plus fréquent dans cette image ?	
Action	Open – Files of type: All files – CrypTool.bmp Analysis – Tools for Analysis – Histogram	
Question 3b	Quelle est la taille du fichier (données utiles) ?	
But 3.2 Action	Chiffrer ce document avec l'algorithme OU exclusif Encrypt – Symmetric (classic) – XOR Choisir une clé par exemple 12345678	
Question 3c	Quelle est la taille du document chiffré ?	
But 3.3 Action	La fonction d'autocorrélation permet de déterminer la longueur de la clé Analysis – Symmetric Encryption (classic) – Ciphertext-Only – XOR Entrer le caractère (8 bit) le plus fréquent puis Continue	
Remarque	On parle de <i>ciphertext only attack</i> car l'attaque ne porte que sur le document chiffré	
Question 3d	Expliquer la méthode utilisée par cette fonction d'autocorrélation pour deviner la clé	
But 3.4 Action	Montrer que la compression du fichier peut rendre cette attaque plus difficile Indiv. Procedures – Tools – Compress – Zip	
Question 3e	Quelle est la taille du fichier compressé ?	
Action	Chiffrer ce document avec la même clé que précédemment Utiliser la fonction d'autocorrélation et observer cette fois que l'attaque n'est plus si facile	
Question 3f	Expliquer pourquoi un texte compressé résiste mieux à une attaque traditionnelle	
4	Entropie d'une source	10'
Rappel	L'entropie permet de mesurer le degré d'aléa d'un message (en clair, compressé ou chiff Entropie H = valeur moyenne de la quantité d'information Hi portée par chaque symbole of message H = _ p(i) Hi = _ p(i) log2 [p(i)] en bit	řré) du
But 4 1	Mesurer l'entropie de divers fichiers	
Action	Ouvrir (File Open) le fichier CrynTeel hmp	
Action	Sélectionner cette fenêtre puis Analysis – Tools for Analysis – Entropy	
Question 4a	Quelle valeur obtenez-vous pour l'image CrypTool.bmp ?	
Question 4b	Quelle valeur obtenez-vous pour l'image CrypTool.bmp chiffrée selon méthode du §3 ?	
Question 4c	Quelle valeur obtenez-vous pour l'image CrypTool.bmp compressée ?	
Question 4d	Quelle valeur obtenez-vous pour l'image CrypTool.bmp compressée puis chiffrée selon §	3?

5	Longueur du <i>ciphertext</i>	10'
Rappel	Pour le chiffrement à clé symétrique, la majorité des algorithmes (AES,) est basée sur chiffrement par bloc produisant ainsi un <i>ciphextext</i> de longueur multiple de la taille du bloc souvent la taille de la clé) Parmi les algorithmes utilisés pratiquement, seul RC4 fonctionne sur le principe du chiffre bit	un ; (qui est ment bit à
But 5.1	Déterminer la longueur minimale de divers ciphertexts	
Action	New pour créer un <i>cleartext</i> approprié Encrypt – Symmetric (modern) – DES (ECB) ; choisir une clé différente de celle proposée	
Question 5a	Quelle est la longueur du bloc DES (ECB) ? Utiliser une représentation hexadécimale avec View – Show as HexDump	
Action	Encrypt – Symmetric (modern) – Rijndael (AES)	
Question 5b	Quelle est la longueur du bloc AES ?	
Action	Encrypt – Symmetric (modern) – RC4	
Question 5c	Quelle est la longueur du <i>ciphertext</i> RC4 ?	
Remarque	Le prof Vaudenay et ses étudiants ont démontré la possibilité d'attaquer une implémentati d'algorithme de chiffrement par blocs Voir SSL_etude_J_C_Asselborn.pdf dans <u>\\10.2.1.1\doc1abo\Secu\Crypto</u>	ion naïve

6 Modes ECB et CBC

Le mode ECB (*electronic codebook mode*) chiffre indépendamment chaque blocs (*plaintext*) alors que, dans le mode CBC (*cipher block chaining mode*), chaque bloc chiffré (*ciphertext*) opère une action sur les blocs en clair suivants

Mode ECB

But 6.1 Proposer une méthode pour démontrer l'intérêt du mode CBC par rapport au mode ECB

Question 6 Expliquer votre méthode

2017

5'

7	Fonction de hachage	10'
But 7.1	Déterminer l'empreinte MD5 (hash) d'un texte	
Action	New puis entrer les chiffres 987654321 Indiv. Procedures – Hash – Hash Demonstration Sélectionner MD5 Visualiser son empreinte → Hash value of the original file Modifier légèrement le texte initial (par exemple le texte 987654320 ne diffère que d'un se Observer les différences au niveau des 2 empreintes (nombre de bits différents)	eul bit)
Question 7a	Quelle est la longueur d'une empreinte MD5 ?	
Question 7b	Est-elle fonction de la longueur du texte présent à l'entrée de la fonction de hachage ?	
Question 7c	Quel est l'intérêt de la fonction SHA-1 ?	
But 7.2	Déterminer la valeur mémorisée par Windows (MD5) pour le mot de passe q2w3e4	
Question 7d	En répétant l'opération N fois, combien obtenez-vous d'empreintes différentes ?	
But 7.3	Effectuer un contrôle d'intégrité de fichiers	
Action	Récupérer localement (bureau) les 2 fichiers original.txt et copy.txt situés dans le partage	réseau
Question 7e	Ces 2 fichiers sont-ils identiques ? Expliquer la méthode utilisée	
But 7.4	Générer une "bonne" clé symétrique de 128 bit "bonne" signifiant que les 2 ^N valeurs possibles sont équiprobables	

- Question 7f Comment procédez-vous ?
- **Remarque** Voir aussi PRNG = Pseudo Random Number Generator <u>http://fr.wikipedia.org/wiki/PRNG</u>

8	Crypto-système RSA	10'
Rappel	Le crypto-système RSA <i>(Rivest, Shamir, Adleman</i> - 1977) continue d'ête Sa sécurité repose sur la difficulté de factoriser	re utilisé malgré son âge
Théorie		Illustration
	1) Choisir aléatoirement 2 grands nombres premiers p et q	p=7 q=13
	2) Calculer $n = p^*q$ (p-1)(q-1)	n = 7*13 = 91 6*12 = 72
	3) Choisir e tel que 1 < e < (p-1)(q-1) pgcd (72,e) = 1	e = 5
	→ clé publique <e,n></e,n>	<5,91>
	 4) Calculer d = e⁻¹ mod (p-1)(q-1) ou d*e=1 mod (p-1)(q-1) → d=(X*(p-1)(q-1) +1)/e essayer X =[1n] afin que d soit un entier d= (2* (p-1)(q-1) +1)/e → clé privée <d,n></d,n> 5) Supprimer p, q, (p-1)(q-1) 	d= 29 <29,91>
Action	 Fermer toutes les fenêtres Sélectionner Indiv. Procedures – RSA Cryptosystem – RSA Demonstration Entrer les 3 valeurs de l'illustration ci-dessus puis Update parameters Entrer le texte HELLO puis <i>Update parameters</i> Le logiciel vous demande de réduire la taille du jeu de caractères à moins de n = 91 Sélectionner Alphabet and number system Choisir Specify alphabet (27 caractères majuscules) puis OK Encrypt pour chiffrer votre texte Copier (CTRL-C) le ciphertext dans le champ Input text 	
	Decrypt pour dechiffrer le cipnertext	
Question 8a	Quelle clé est utilisée pour chiffrer ?	
Question 8b	Quelle clé est utilisée pour déchiffrer ?	
Remarque	La notation en base 10 indique la position du caractère dans l'alphabet	

9	Signature numérique	10'
Rappel	Grâce à la signature numérique, l'email ou le certificat que Bob reçoit es Alice possède la clé privée appairée à la clé publique du certificat.	st authentique, car seule
Théorie		Illustration
	1) Alice signe le message M C = M ^d mod n	M = 17 C = 17 ²⁹ mod 91 = 75
	2) Bob C ^e mod n = M ?	75 ⁵ mod 91 = 17 = M
But 9.1 Action	Générer une paire de clés asymétriques Fermer toutes les fenêtres Sélectionner Digital Signatures – PKI – Generate pour générer une paire Remplir les 4 champs obligatoires (Last name, …) Generate new key pair OK pour mémoriser clé privée et certificat	e de clés RSA de 1024 bits
But 9.2 Action	Afficher le certificat numérique Sélectionner Digital Signatures – PKI – Display pour visualiser les clés F Sélectionnez la ligne correspondante puis Show certificate pour accéder certificat X.509	RSA disponibles r aux divers champs du
But 9.3 Action	Signer un document New puis entrer le texte qu'Alice veut envoyer à Bob Digital Signatures – Sign Document avec les options par défaut Sélectionner la paire de clé Entrer le code PIN Observer le résultat : Signature au début du document puis votre texte à Digital Signatures – Extract Signature donne un affichage plus explicit	à la fin
Question 9a	Pourquoi avez-vous du entrer votre code PIN ?	
But 9.3 Action	Contrôler la signature du document Digital Signatures – Verify Signature Sélectionner la paire de clé	
	Modifier le document et revérifier la signature. Ne pas utiliser de <i>backspace</i> mais écrire la nouvelle valeur	
Question 9b	A quoi sert la signature ?	
Question 9c	Comment Bob contrôle-t-il cette signature ?	
Question 9d	Quels caractères du fichier signé sont protégés ?	

10	Système hybride 10'
Objectif	Illustrer le principe de fonctionnement des systèmes tels que SSL, EFS, IPSec, … qui protègent les données en utilisant un chiffrement symétrique (performance) et transfèrent le secret partagé dans un canal sécurisé par un chiffrement asymétrique
But 10.1 Action	Chiffrer le document avec une clé sym Fermer toutes les fenêtres Encrypt – Hybrid – RSA-AES Encryption Créer un document texte sur le bureau Chaque élément visuel rouge doit être sélectionné pour passer au vert Open document : choisir un fichier Generate session key Encrypt document symmetr.
But 10.2	Chiffrer la clé sym (secret à partager) Select asymmetr. key : utiliser la clé générée précédemment Encrypt session key asymmetr. (chiffrer la clé de session avec la clé publique) Les étapes intermédiaires sont visibles à partir des objets bleus Save
But 10.3	Effectuer les operations inverses Decrypt – Hybrid – RSA-AES Decryption
Question 10	Quand et pourquoi devez-vous entrer un code PIN ?
Remarque	Dans le cas d'un échange SSL, le serveur transmet son certificat qui permet ainsi au client de transmettre la clé de session chiffrée
11	Pour ceux qui ont terminé tous les points précédents
11a	Indiv. Procedures – RSA Cryptosystem – Prime Number Test Generate Prime Number Factorization of a Number Signature Demo
11b	Indiv. Procedures – Protocols – Secure E-Mail with S/MIME
11c	Indiv. Procedures – Hash – Generation of HMACs
11d	Indiv. Procedures – Tools – Generate Random Numbers Password Quality Meter Password Entropy
11e	Analysis – Tools for Analysis – N-Gram

ſ